http://iet.metastore.ingenta.com
1887

Solving the manufacturing cell design problem using the modified binary firefly algorithm and the egyptian vulture optimisation algorithm

Solving the manufacturing cell design problem using the modified binary firefly algorithm and the egyptian vulture optimisation algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Software — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The manufacturing cell design problem (MCDP) aims to minimise the movements of parts between the production cells. The MCDP is an NP-Hard optimisation problem with a binary domain. For the resolution of the MCDP, the authors employ the firefly algorithm (FA) metaheuristic. FA is a metaheuristic with a real domain; therefore, an efficient method for transfer and discretisation from the real domain to the binary domain has been used. The second metaheuristic used is Egyptian vulture optimisation algorithm (EVOA). EVOA is a recent metaheuristic inspired by the behaviour of the Egyptian vulture bird. EVOA uses a set of operators which must be adapted to the MCDP optimisation problem. Two types of experiments have been performed. The first experiment consists of solving the MCDP with a set of 90 homogeneous incidence matrices. In the tests, FA and EVOA have been used obtaining good results. Subsequently, the obtained results have been compared versus other eight metaheuristics. The second experiment consists in a set of 35 inhomogeneous incidence matrices. The global optimum value for 13 problems has been obtained using constraint programming. Finally, for the other 22 problems, the authors have reported the best values found using FA and EVOA.

References

    1. 1)
      • 1. Selim, H.M., Askin, R.G., Vakharia, A.J.: ‘Cell formation in group technology: review, evaluation and directions for future research’, Comput. Ind. Eng., 1998, 34, (1), pp. 320.
    2. 2)
      • 2. Boctor, F.: ‘A linear formulation of the machine-part cell formation problem’, Int. J. Prod. Res., 1991, 29, (2), pp. 343356.
    3. 3)
      • 3. Soto, R., Kjellerstrand, H., Gutiérrez, J., et al: ‘Solving manufacturing cell design problems using constraint programming’. International Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems, 2012, pp. 400406.
    4. 4)
      • 4. Soto, R., Crawford, B., Almonacid, B., et al: ‘Machine-part cell formation problems with constraint programming’. 2015 34th International Conf. of the Chilean Computer Science Society (SCCC), 2015, pp. 14.
    5. 5)
      • 5. Soto, R., Kjellerstrand, H., Durán, O., et al: ‘Cell formation in group technology using constraint programming and Boolean satisfiability’, Expert Syst. Appl., 2012, 39, (13), pp. 1142311427.
    6. 6)
      • 6. Fister, I.Jr., Yang, X.-S., Fister, I., et al: ‘A brief review of nature-inspired algorithms for optimization’, arXiv preprint arXiv:1307.4186.
    7. 7)
      • 7. Andres, C., Lozano, S.: ‘A particle swarm optimization algorithm for part–machine grouping’, Robot. Comput.-Integr. Manuf., 2006, 22, (5), pp. 468474.
    8. 8)
      • 8. Soto, R., Crawford, B., Vega, E., et al: ‘Solving manufacturing cell design problems using an artificial fish swarm algorithm’. Mexican International Conf. on Artificial Intelligence, 2015, pp. 282290.
    9. 9)
      • 9. Soto, R., Crawford, B., Vega, E., et al: ‘Solving manufacturing cell design problems using a shuffled frog leaping algorithm’. The 1st International Conf. on Advanced Intelligent System and Informatics (AISI2015), 28–30 November 2015, Beni Suef, Egypt, 2016, pp. 253261.
    10. 10)
      • 10. Soto, R., Crawford, B., Almonacid, B., et al: ‘A migrating birds optimization algorithm for machine-part cell formation problems’. Mexican International Conf. on Artificial Intelligence, 2015, pp. 270281.
    11. 11)
      • 11. Soto, R., Crawford, B., Almonacid, B., et al: ‘Efficient parallel sorting for migrating birds optimization when solving machine-part cell formation problems’, Sci. Program., 2016, 2016, p. 39.
    12. 12)
      • 12. Soto, R., Crawford, B., Castillo, C., et al: ‘Solving the manufacturing cell design problem via invasive weed optimization’. Artificial Intelligence Perspectives in Intelligent Systems, 2016, pp. 115126.
    13. 13)
      • 13. Soto, R., Crawford, B., Zec, C., et al: ‘A bat algorithm to solve the manufacturing cell design problem’. 2016 11th Iberian Conf. on Information Systems and Technologies (CISTI), 2016, pp. 16.
    14. 14)
      • 14. Soto, R., Crawford, B., Carrasco, C., et al: ‘Solving manufacturing cell design problems by using a dolphin echolocation algorithm’. International Conf. on Computational Science and Its Applications, 2016, pp. 7786.
    15. 15)
      • 15. Darwish, S.: ‘Combining firefly algorithm and Bayesian classifier: new direction for automatic multilabel image annotation’, IET Image Process., 2016, 10, (10), pp. 763772.
    16. 16)
      • 16. Mishra, A., Gundavarapu, V.N.K., Bathina, V.R., et al: ‘Real power performance index and line stability index-based management of contingency using firefly algorithm’, IET. Gener. Transm. Distrib., 10, (10), pp. 23272335.
    17. 17)
      • 17. Mishra, A., Gundavarapu, V.N.K.: ‘Line utilisation factor-based optimal allocation of IPFC and sizing using firefly algorithm for congestion management’, IET. Gener. Transm. Distrib., 2016, 10, (1), pp. 115122.
    18. 18)
      • 18. Sayadi, M.K., Hafezalkotob, A., Naini, S.G.J.: ‘Firefly-inspired algorithm for discrete optimization problems: an application to manufacturing cell formation’, J. Manuf. Syst., 2013, 32, (1), pp. 7884.
    19. 19)
      • 19. Soto, R., Crawford, B., Lama, J., et al: ‘A firefly algorithm to solve the manufacturing cell design problem’. Artificial Intelligence Perspectives in Intelligent Systems, 2016, pp. 103114.
    20. 20)
      • 20. Sur, C., Sharma, S., Shukla, A.: ‘Solving travelling salesman problem using Egyptian vulture optimization algorithm – a new approach’. Language Processing and Intelligent Information Systems, 2013, pp. 254267.
    21. 21)
      • 21. Sur, C., Sharma, S., Shukla, A.: ‘Egyptian vulture optimization algorithm–a new nature inspired meta-heuristics for knapsack problem’. The 9th International Conf. on Computing and Information Technology (IC2IT2013), 2013, pp. 227237.
    22. 22)
      • 22. Sur, C., Shukla, A.: ‘Road traffic management using Egyptian vulture optimization algorithm: a new graph agent-based optimization meta-heuristic algorithm’. Networks and Communications (NetCom2013), 2014, pp. 107122.
    23. 23)
      • 23. Boctor, F.F.: ‘A jinear formulation of the machine-part cell formation problem’, Int. J. Prod. Res., 1991, 29, (2), pp. 343356.
    24. 24)
      • 24. Yang, X.-S.: ‘Nature-inspired metaheuristic algorithms’ (Luniver press, 2010).
    25. 25)
      • 25. Chandrasekaran, K., Simon, S.P.: ‘Network and reliability constrained unit commitment problem using binary real coded firefly algorithm’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 921932.
    26. 26)
      • 26. Mirjalili, S., Lewis, A.: ‘S-shaped versus v-shaped transfer functions for binary particle swarm optimization’, Swarm Evol. Comput., 2013, 9, pp. 114.
    27. 27)
      • 27. Almonacid, B., Aspee, F.: ‘Dataset – modified Binary firefly algorithm and Egyptian vulture optimization algorithm for solving manufacturing cell design problem’ (Pontificia Universidad Católica de Valparaíso, Chile, 2016). Available at http://www.inf.ucv.cl/~balmonacid/MPCFP/IET_AKISM2016.
    28. 28)
      • 28. Yang, X.-S.: ‘Firefly algorithms for multimodal optimization’. International Symp. on Stochastic Algorithms, 2009, pp. 169178.
    29. 29)
      • 29. Crawford, B., Soto, R., Olivares-Suárez, M., et al: ‘A binary firefly algorithm for the set covering problem’. Modern Trends and Techniques in Computer Science, 2014, pp. 6573.
    30. 30)
      • 30. Durán, O., Rodriguez, N., Consalter, L.A.: ‘Collaborative particle swarm optimization with a data mining technique for manufacturing cell design’, Expert Syst. Appl., 2010, 37, (2), pp. 15631567.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2016.0196
Loading

Related content

content/journals/10.1049/iet-sen.2016.0196
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address