http://iet.metastore.ingenta.com
1887

Using CSTPNs to model traffic control CPS

Using CSTPNs to model traffic control CPS

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Software — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Transportation cyber-physical system (T-CPS) is a spatiotemporal discrete-continuous hybrid system. However, the hybrid T-CPSs have some analysis and modelling problems, especially the problems related to the spatiotemporal characteristics. Existing coloured Petri net approaches of traffic control cannot effectively analyse dynamic changes of cyber systems and physical entities in space and time. Moreover, some problems, related to the state space explosion and the large complex T-CPSs, have not been well solved. This study develops the innovative methods for T-CPS design and modelling via the development and application of coloured spatiotemporal Petri nets (CSTPNs). The proposed research ideas involve the CSTPN theory creation, the development of traffic intersection coordination control system using CSTPNs, the traffic simulation analysis and the implementation of T-CPS-based CSTPNs. The experimental results show that the new spatiotemporal theories and approaches of the traffic coordination control based on CSTPNs have excellent potentials to address the issues related to the spatiotemporal discrete-continuous characteristics of T-CPS. Moreover, these innovative methods with a good validity can be easily applied into practise for the development of T-CPS.

References

    1. 1)
      • 1. Yue, H., Yang, R.J.: ‘Development of intelligent transportation systems and plan of integrated information system’, J. Wuhan Univ. Technol., 2005, 109, (1), pp. 5770.
    2. 2)
      • 2. Sun, D.H., Li, Y.H., Liu, W.N., et al: ‘Research summary on transportation cyber physical systems and the challenging technologies’, Zhongguo Gonglu Xuebao (China J. Highway Transp.), 2013, 26, (1), pp. 144154.
    3. 3)
      • 3. Yue, H., Revesz, P.Z.: ‘TVICS: an efficient traffic video information converting system’, 19th Int. Symp. on Temporal Representation and Reasoning (TIME), (Prentice Hall inc, NJ, 2012), pp. 141148.
    4. 4)
      • 4. Peterson, J.L.: ‘Petri net theory and the modeling of systems’, 1981.
    5. 5)
      • 5. Murata, T.: ‘Petri nets: properties, analysis and applications’, Proc. IEEE, 1989, 77, (4), pp. 541580.
    6. 6)
      • 6. Girault, C., Valk, R.: ‘Petri nets for systems engineering: a guide to modeling, verification, and applications’ (Springer Science and Business Media, Berlin, 2003).
    7. 7)
      • 7. Huang, H., Kirchner, H.: ‘Policy composition based on Petri nets’. 33rd Annual IEEE Int. Computer Software and Applications Conf., COMPSAC'09, 2009.
    8. 8)
      • 8. Febbraro, A.D., Sacco, N.: ‘On modelling urban transportation networks via hybrid Petri nets’, Control Eng. Pract., 2004, 12, (10), pp. 12251239.
    9. 9)
      • 9. Júlvez, J., Boel, R.K.: ‘A continuous Petri net approach for model predictive control of traffic systems’, IEEE Trans. Syst. Man Cybern. A, Syst. Hum., 2010, 40, (4), pp. 686697.
    10. 10)
      • 10. Ng, K.M., Reaz, M.B.I., Ali, M.A.M.: ‘A review on the applications of Petri nets in modeling, analysis, and control of urban traffic’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (2), pp. 858870.
    11. 11)
      • 11. Febbraro, A.D., Giglio, D., Sacco, N.: ‘On applying Petri nets to determine optimal offsets for coordinated traffic light timings’. Proc. The IEEE Int. Conf. on Intelligent Transportation Systems, 2002, 2002.
    12. 12)
      • 12. Haghighi, I., Jones, A., Kong, Z., et al: ‘SpaTeL: a novel spatial–temporal logic and its applications to networked systems’. Proc. of the 18th Int. Conf. on Hybrid Systems, Computation and Control, 2015, pp. 189198.
    13. 13)
      • 13. Wu, H., Chen, Y., Zhang, M.: ‘On denotational semantics of spatial-temporal consistency language – SteC’. 2013 Int. Symp. on Theoretical Aspects of Software Engineering (TASE), 2013.
    14. 14)
      • 14. Mu, Y., Wu, J., Jenkins, N., et al: ‘A spatial–temporal model for grid impact analysis of plug-in electric vehicles’, Appl. Energy, 2014, 114, pp. 456465.
    15. 15)
      • 15. Chi, M., Yubin, H., Yongyong, Z., et al: ‘Spatial–temporal indexing research based on road network: improved-MON-tree’, Int. J. Hybrid Inf. Technol., 2014, 7, (4), pp. 407416.
    16. 16)
      • 16. Kloog, I., Chudnovsky, A.A., Just, A.C., et al: ‘A new hybrid spatio-temporal model for estimating daily multi-year PM 2.5 concentrations across northeastern USA using high resolution aerosol optical depth data’, Atmos. Environ., 2014, 95, pp. 581590.
    17. 17)
      • 17. Shao, Z., Liu, J.: ‘Spatio-temporal hybrid automata for cyber-physical systems’, In: Liu, Z., Woodcock, J., Zhu, H. (eds): ‘International colloquium on theoretical aspects of computing (ICTAC)’, (Springer, Berlin Heidelberg), 2013, pp. 337354.
    18. 18)
      • 18. Thong, W.J., Ameedeen, M.A.: ‘A survey of Petri net tools’, inSulaiman, H.A., Othman, M.A., Othman, M.F.I, Pee, N.C., Rahim, Y.A., Pee, N.C. (EDs.): ‘Advanced Computer and Communication Engineering Technology’ (Springer International Publishing, 2015), pp. 537551.
    19. 19)
      • 19. Zhang, G., Zhang, M., Yan, R., et al: ‘Modeling and analysis for CPS physical entities based on spatio-temporal Petri net’, J. Comput., 2014, 9, (2), pp. 499505.
    20. 20)
      • 20. Aized, T.: ‘Modelling and performance maximization of an integrated automated guided vehicle system using coloured Petri net and response surface methods’, Computers & Industrial Engineering, 2009, 57, (3), pp. 822831.
    21. 21)
      • 21. Huang, Y.S., Chung, T.H.: ‘Modelling and analysis of air traffic control systems using hierarchical timed coloured Petri nets’, Trans. Inst. Meas. Control, 2011, 33, (1), pp. 3049.
    22. 22)
      • 22. List, G.F., Cetin, M.: ‘Modeling traffic signal control using Petri nets’, IEEE Trans. Intell. Transp. Syst., 2004, 5, (3), pp. 177187.
    23. 23)
      • 23. Cheng, Y.H., Yang, L.A.: ‘A fuzzy Petri nets approach for railway traffic control in case of abnormality: evidence from Taiwan railway system’, Expert Syst. Appl., 2009, 36, (4), pp. 80408048.
    24. 24)
      • 24. Silva, M., Recalde, L.: ‘On fluidification of Petri nets: from discrete to hybrid and continuous models’, Annu. Rev. Control, 2004, 28, (2), pp. 253266.
    25. 25)
      • 25. Dotoli, M., Fanti, M.P., Iacobellis, G.: ‘An urban traffic network model by first order hybrid Petri nets’. IEEE Int. Conf. on Systems, Man and Cybernetics, SMC 2008, 2008, pp. 19291934.
    26. 26)
      • 26. J, űlvez, J.J., Boel, R.K.: ‘A continuous Petri net approach for model predictive control of traffic systems’, IEEE Trans. Syst. Hum. Syst. Man Cybern. A, 2010, 40, (4), pp. 686697.
    27. 27)
      • 27. Dotoli, M., Fanti, M.P.: ‘An urban traffic network model via coloured timed Petri nets’, Control Eng. Pract., 2006, 14, (10), pp. 12131229.
    28. 28)
      • 28. Ma, N.: ‘Influence factors of coordination control system in signalized intersections’, Harbin Gongye Daxue Xuebao (J. Harbin Inst. Technol.), 2011, 43, (6), pp. 112117.
    29. 29)
      • 29. Di Febbraro, A., Sacco, N.: ‘On modelling urban transportation networks via hybrid Petri nets’, Control Eng. Pract., 2004, 12, (10), pp. 12251239.
    30. 30)
      • 30. Perronnet, F., Abbas-Turki, A., El Moudni, A.: ‘Vehicle routing through deadlock-free policy for cooperative traffic control in a network of intersections: reservation and congestion’. 2014 IEEE 17th Int. Conf. on. Intelligent Transportation Systems (ITSC), 2014, pp. 22332238.
    31. 31)
      • 31. Azimi, R., Bhatia, G., Rajkumar, R., et al: ‘Intersection management using vehicular networks’, SAE Technical Paper, 2012.
    32. 32)
      • 32. Jianjun, S., Xu, W., Jizhen, G., et al: ‘The analysis of traffic control cyber-physical systems’, Procedia, Soc. Behav. Sci., 2013, 96, pp. 24872496.
    33. 33)
      • 33. Liu, C., Sharma, A., Smaglik, E., et al: ‘TraSER: a traffic signal event-based recorder’, Softwarex, 2016, 5, pp. 156162.
    34. 34)
      • 34. Yue, H., Jones, E.G., Revesz, P.: ‘Local polynomial regression models for average traffic speed estimation and forecasting in linear constraint databases’. 2010 17th Int. Symp. on Temporal Representation and Reasoning (TIME), 2010, pp. 154161.
    35. 35)
      • 35. Yue, H., Rilett, L.R., Revesz, P.Z.: ‘Spatio-temporal traffic video data archiving and retrieval system’, GeoInformatica, 2016, 20, (1), pp. 5994.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2016.0119
Loading

Related content

content/journals/10.1049/iet-sen.2016.0119
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address