Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Ontology-based service discovery framework for dynamic environments

With all the recent advancements in the electronic world, hardware is becoming smaller, cheaper and more powerful; while the software industry is moving towards service-oriented integration technologies. Hence, service oriented architecture is becoming a popular platform for the development of applications for distributed embedded real-time system (DERTS). With rapidly increasing diversity of services on the internet, new demands have been raised concerning the efficient discovery of heterogeneous device services in the dynamic environment of DERTS. Context-awareness principles have been widely studied for DERTS; hence, it can be used as an additional set of service selection criteria. However, in order to use context information effectively, it should be presented in an unambiguous way and the dynamic nature of the embedded and real-time systems should be considered. To address these challenges, the authors present a service discovery framework for DERTS which uses context-aware ontology of embedded and real-time systems and a semantic matching algorithm to facilitate the discovery of device services in embedded and real-time system environments. The proposed service discovery framework also considers the associated priorities with the requirements posed by the requester during the service discovery process.

References

    1. 1)
      • 17. Zeshan, F., Mohamad, R., Ahmad, M.N.: ‘Quality of service ontology languages for web services discovery: An overview and limitations’. LNCS (PART 1–8016), pp. 400407.
    2. 2)
      • 31. Zeshan, F., Mohamad, R., Ahmad, M.N.: ‘Service discovery framework for distributed embedded real-time systems’, In Ghani, I., Kadir, W., Ahmad, M. (Eds): ‘Handbook of Research on Emerging Advancements and Technologies in Software Engineering’ (IGI Global, Hershey, PA), pp. 126147.
    3. 3)
      • 23. Zeshan, F., Mohamad, R.: ‘Medical ontology in the dynamic healthcare environment’, Procedia Comput. Sci., 2012, 10, pp. 340348.
    4. 4)
      • 28. Aversa, R., Martino, B.D., Venticinque, S., et al: ‘A simulation model for localization of pervasive objects using heterogeneous wireless networks’, Simul. Model. Pract. Theory, 2011, 19, (8), pp. 17581772.
    5. 5)
      • 35. Lin, D.: ‘An information-theoretic definition of similarity’. Proc. 15th Int. Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1998, pp. 296304.
    6. 6)
      • 16. Strimpakou, M.A., Roussaki, I.G., Anagnostou, M.E.: ‘A context ontology for pervasive service provision’. Proc. of the 20th Int. Conf. on Advanced Information Networking and Applications, Vienna, Austria, 2006, pp. 775779.
    7. 7)
      • 34. Skoutas, D., Simitsis, A., Sellis, T.K.: ‘A ranking mechanism for semantic web service discovery’. IEEE SCW., 2007, pp. 4148.
    8. 8)
      • 24. Najar, S., Pinheiro, M.K., Souveyet, C.: ‘A new approach for service discovery and prediction on pervasive information system’, Procedia Comput. Sci., 2014, 32, pp. 421428.
    9. 9)
      • 4. Zeshan, F., Mohamad, R., Ahmad, M.N.: ‘Semantic web service composition approaches: overview and limitations’, Int. J. New Comput. Archit. Appl. (IJNCAA), 2011, 1, (3), pp. 640651, The Society of Digital Information and Wireless Communications, (ISSN: 2220-9085).
    10. 10)
      • 10. Wang, X., Zhang, D.Q., Gu, T., et al: ‘Ontology based context modeling and reasoning using OWL’. Proc. of the 2nd IEEE Annual Conf. on Pervasive Computing and Communications Workshops, Orlando, Florida, USA, 2004, pp. 1822.
    11. 11)
      • 1. Machado, G.B., Siqueira, F., Mittmann, R., et al: ‘Embedded systems integration using web services’. Proc. of Fifth Int. Conf. on Networking (ICN'06), Mauritius Island, April 2006.
    12. 12)
      • 30. Li, L., Horrocks, I.: ‘A software framework for matchmaking based on semantic web Technology’. Proc. of the 12th Int. Conf. on World Wide Web, pp. 331339.
    13. 13)
      • 20. Corcho, O., Fernández-López, M., Gómez-Pérez, A., et al: ‘Building legal ontologies with METHONTOLOGY and WebODE’. Springer-Verlag, LNAI No. 3369, pp. 142157, 2005, ISBN: 3-540-25063-8.
    14. 14)
      • 22. Zeshan, F., Mohamad, R., Ahmad, M.N.: ‘Comparative evaluation of semantic web service composition approaches’. ICSECS 2011, CCIS 181, Verlag Berlin Heidelberg, 2011, pp. 283290.
    15. 15)
      • 32. Zeshan, F., Mohamad, R., Ahmad, M.N.: ‘Ontology for autonomous mobile robot system’, In Ebook Series of Frontiers in Artificial Intelligence and Applications, Volume265: New Trends in Software Methodologies, Tools and Techniques; pp. 10731085. doi: 10.3233/978-1-61499-434-3-1073.
    16. 16)
      • 25. Guo, L., Wang, S., Kang, L., et al: ‘Agent-based manufacturing service discovery method for cloud manufacturing’, Int. J. Adv. Manuf. Technol., 2015, 81, (9-12), pp. 21672181.
    17. 17)
      • 26. Wang, X., Cao, J., Xiang, Y.: ‘Dynamic cloud service selection using an adaptive learning mechanism in multi-cloud computing’, J. Syst. Softw., 2015, 100, pp. 195210.
    18. 18)
      • 21. Kritikos, , et al: ‘Mixed-integer programming for QoS-based web service matchmaking’, IEEE Trans. Serv. Comput., 2009, 2, (2), pp. 122139.
    19. 19)
      • 15. Pawar, P., Tokmakoff, A.: ‘Ontology-based context-aware service discovery for pervasive environments’. Co-located with IEEE ICPS 2006, Lyon, France, 29 June 2006, pp. 17.
    20. 20)
      • 9. Strang, T., Linnhoff-Popien, C., Frank, K.: ‘Applications of a context ontology language’. Proc. of Int. Conf. on Software, Telecommunications and Computer Networks, Split/Croatia, Venice/Italy, Ancona/ Italy, Dubrovnik/Croatia, 2003, pp. 1418.
    21. 21)
      • 13. Preuveneers, D., Bergh, J.V., Wagelaar, D., et al: ‘Towards an extensible context ontology for ambient intelligence’. Proc. 2nd European Symp. Ambient Intelligence, 2004 (LNCS, 3295), pp. 148159.
    22. 22)
      • 27. Yachir, A., Amirat, Y., Chibani, A., et al: ‘Event-aware framework for dynamic services discovery and selection in the context of ambient intelligence and internet of things’, IEEE Trans. Autom. Sci. Eng., 2016, 13, (1), pp. 85102.
    23. 23)
      • 14. Bandara, A., Payne, T., Roure, D., et al: ‘A pragmatic approach for the semantic description and matching of pervasive resources’, Int. J. Pervasive Comput. Commun., 2010, 6, (1), pp. 1946.
    24. 24)
      • 2. Vogels, W.: ‘Web services are not distributed objects’, IEEE Internet Comput., 2003, 7, (6), pp. 5966.
    25. 25)
      • 11. Tan, R., Gu, J., Zhong, Z., et al: ‘SOCOM: multi-sensor oriented context model based on ontologies’. Eighth Int. Conf. on Intelligent Environments, IEEE, 2012.
    26. 26)
      • 5. Li, J., Zaman, N., Li, H.: ‘A decentralized locality-preserving context-aware service discovery framework for internet of things’. , 2015 IEEE Int. Conf. on Services Computing (SCC) IEEE, June 2015, pp. 317323.
    27. 27)
      • 6. Chen, H., Finin, T., Joshi, A.: ‘An ontology for context-aware pervasive computing environments’, Spec. Issue Ontologies Distrib. Syst., Knowl. Eng. Rev., 2003, 18, (3), pp. 197207.
    28. 28)
      • 33. Resnik, P.: ‘Using information content to evaluate semantic similarity in a taxonomy’. IJCAI., 1995, pp. 448453.
    29. 29)
      • 19. Fergerson, R.W., Noy, N.F., Musen, M.A.: ‘The knowledge model of protégé 2000: Combining interoperability and flexibility’. Proc. of the 12th EKAW Conf., Verlag, 2000, pp. 1732.
    30. 30)
      • 3. Zeshan, F., Mohamad, R., Ahmad, M.N.: ‘Services discovery frameworks for dynamic environments: an overview and limitations’. The Proc. of the World Congress on Engineering, 2013.
    31. 31)
      • 29. Chakraborty, D., Perich, F., Avancha, S., et al: ‘Dreggie: semantic service discovery for m-commerce applications’. Workshop on Reliable and Secure Applications in Mobile Environment, Symp. on Reliable Distributed Systems.
    32. 32)
      • 7. Broens, T., Pokraev, S., Sinderen, M.V., et al: ‘Context-aware, ontology-based service discovery’, EUSAI, 2004, 3295, pp. 7283.
    33. 33)
      • 8. Chen, H., Perich, F., Finin, T., et al: ‘SOUPA: standard ontology for ubiquitous and pervasive applications’. Proc. of the First Int. Conf. on Mobile and Ubiquitous Systems: Networking and Services, 2004.
    34. 34)
      • 12. CoDaMoS development team: ‘The codamos project’, 2003.
    35. 35)
      • 18. Liu, Y., Loh, H.T., Sun, A.: ‘Imbalanced text classification: a term weighting approach’, Expert Syst. Appl., 2009, 36, (1), pp. 690701.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2016.0048
Loading

Related content

content/journals/10.1049/iet-sen.2016.0048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address