http://iet.metastore.ingenta.com
1887

Machine learning approaches for predicting software maintainability: a fuzzy-based transparent model

Machine learning approaches for predicting software maintainability: a fuzzy-based transparent model

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Software — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Software quality is one of the most important factors for assessing the global competitive position of any software company. Thus, the quantification of the quality parameters and integrating them into the quality models is very essential.Many attempts have been made to precisely quantify the software quality parameters using various models such as Boehm's Model, McCall's Model and ISO/IEC 9126 Quality Model. A major challenge, although, is that effective quality models should consider two types of knowledge: imprecise linguistic knowledge from the experts and precise numerical knowledge from historical data.Incorporating the experts’ knowledge poses a constraint on the quality model; the model has to be transparent.In this study, the authorspropose a process for developing fuzzy logic-based transparent quality prediction models.They applied the process to a case study where Mamdani fuzzy inference engine is used to predict software maintainability.Theycompared the Mamdani-based model with other machine learning approaches.The resultsshow that the Mamdani-based model is superior to all.

References

    1. 1)
      • 1. Gillies, C.A.: ‘Software quality: theory and management’ (Lexington, Ky., 2011, 3rd edn.).
    2. 2)
      • 2. Standard II: ISO-9126 Software Product Evaluation –Quality Characteristics and Guidelines for Their Use, 1991.
    3. 3)
      • 3. Fenton, N.E., Pfleeger, S.L.: ‘Software metrics: arigorous and practical approach’ (USA PWS Publishing Co., Boston, MA, 1998).
    4. 4)
      • 4. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J., Merritt, M.J.: ‘Characteristics of software quality’ (North Holland Publishing Company, 1978).
    5. 5)
      • 5. McCall, J.A., Richards, P.K., Walters, G.F.: ‘Factors in Software Quality’. Technical Report Volume I, NTIS, NTIS Springfield, VA, NTIS AD/A-049 014, 1977.
    6. 6)
      • 6. Dromey, R.G.: ‘A model for software product quality’, IEEE Trans.Softw. Eng., 1995, 21, (2), pp. 146162 (doi: 10.1109/32.345830).
    7. 7)
      • 7. Challa, J.S., Paul, A., Dada, Y., Nerella, V., Srivastava, P.R., Singh, A.P.: ‘Integrated software quality evaluation: afuzzy multi-criteria approach’, J. Inf. Process. Syst., 2011, 7, (3), pp. 473518.
    8. 8)
      • 8. Sharma, A., Kumar, R., Grover, P.S.: ‘Estimation of quality for software components –an empirical approach’. Proc. SIGSOFT Software Engineering Notes, 2008, pp. 110.
    9. 9)
      • 9. Lamouchi, O., Cherif, A.R., Lévy, N.: ‘A framework based measurements for evaluating an IS quality’. Proc. Fifth on Asia-Pacific Conf. on Conceptual Modelling, Wollongong, NSW, Australia, 2008.
    10. 10)
      • 10. Srivastava, P.R., Kumar, K.: ‘An approach towards software quality assessment’, Commun. Comput. Inf. Syst. Series’, 2009, 31, (6), pp. 345346 (doi: 10.1007/978-3-642-00405-6_40).
    11. 11)
      • 11. Al-Jamimi, H.A., Ahmed, M.: ‘Machine learning-based software quality prediction models: state of the art’. Proc. Fourth Int. Conf. on Information Science and Applications, Pattaya, Thailand, 2013.
    12. 12)
      • 12. Guillaume, S.: ‘Designing fuzzy inference systems from data: an interpretability– oriented review’, IEEE Trans. Fuzzy Syst., 2001, 9, (3), pp. 42643 (doi: 10.1109/91.928739).
    13. 13)
      • 13. Paiva, R.P., Dourado, A.: ‘Interpretability and learning in neuro-fuzzy systems’, Fuzzy Sets Syst., 2004, 147, (1), pp. 1738 (doi: 10.1016/j.fss.2003.11.012).
    14. 14)
      • 14. Gactoa, M.J., Alcalá, R., Herrera, F.: ‘Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures’, Inf. Sci., 2011, 181, (20), pp. 43404360 (doi: 10.1016/j.ins.2011.02.021).
    15. 15)
      • 15. Zadeh, L.A.: ‘From computing with numbers to computing with words– from manipulation of measurements to manipulation of perceptions’, Int. J. Appl. Math. Comput. Sci., 2002, 12, (3), pp. 307324.
    16. 16)
      • 16. Mamdani, E.H., Assilian, S.: ‘An experiment in linguistic synthesis with a fuzzy logic controller’, Int. J. Man-Mach. Stud., 1975, 7, (1), pp. 113 (doi: 10.1016/S0020-7373(75)80002-2).
    17. 17)
      • 17. Takagi, T., Sugeno, M.: ‘Fuzzy identification of systems and its applications to modelling and control’, IEEE Trans. Syst. Man Cybern., 1985, 15, (1), pp. 116131 (doi: 10.1109/TSMC.1985.6313399).
    18. 18)
      • 18. Hamel, L.H.: ‘Knowledge discovery with support vector machines’ (Wiley, 2009).
    19. 19)
      • 19. Koski, T., Noble, J.M.: ‘Bayesian networks. An introduction’ (John Wiley and Sons, Ltd., 2009).
    20. 20)
      • 20. Buhmann, M.D.: ‘Radial basis functions: theory and implementations’ (Cambridge University Press, 2003).
    21. 21)
      • 21. Specht, D.F.: ‘Probabilistic neural networks’, Neural Netw., 1990, 3, (1), pp. 109118 (doi: 10.1016/0893-6080(90)90049-Q).
    22. 22)
      • 22. Zhang, D., Tsai, J.J.P.: ‘Machine learning applications in software engineering’ (World Scientific Inc., 2005).
    23. 23)
      • 23. van-Koten, C., Gray, A.R.: ‘An application of Bayesian network for predicting object-oriented software maintainability’, Inf. Softw. Technol., 2006, 48, (1), pp. 5967 (doi: 10.1016/j.infsof.2005.03.002).
    24. 24)
      • 24. Li, W., Henry, S.: ‘Object oriented metrics that predict maintainability’, J. Syst. Softw., 1993, 23, (2), pp. 111122 (doi: 10.1016/0164-1212(93)90077-B).
    25. 25)
      • 25. Jeet, K., Dhir, R.: ‘Bayesian and fuzzy approach to assess and predict the maintainability of software: acomparative study’ (International Scholarly Research Network ISRN Software Engineering, 2012).
    26. 26)
      • 26. Malhotra, R., Kaur, A., Singh, Y.: ‘Empirical validation of object-oriented metrics for predicting fault proneness at different severity levels using support vector machines’, Int. J. Syst. Assurance Eng. Manage., 2010, 1, (3), pp. 269281 (doi: 10.1007/s13198-011-0048-7).
    27. 27)
      • 27. Thwin, M.M.T., Quah, T.-S.: ‘Application of neural networks for software quality prediction using object-oriented metrics’, J. Syst. Softw., 2005, 76, (2), pp. 14756 (doi: 10.1016/j.jss.2004.05.001).
    28. 28)
      • 28. Zhou, Y., Leung, H.: ‘Predicting object-oriented software maintainability using multivariate adaptive regression splines’, J. Syst. Softw., 2007, 80, (8), pp. 13491361 (doi: 10.1016/j.jss.2006.10.049).
    29. 29)
      • 29. Dash, Y., Dubey, S.K., Rana, A.: ‘Maintainability prediction of object oriented software system by using artificial neural network approach’, Int. J. Soft Comput. Eng., 2012, 2, (2), pp. 420423.
    30. 30)
      • 30. Li-jin, W., Xin-xin, H., Zheng-yuan, N., Wen-hua, K.: ‘Predicting object-oriented software maintainability using projection pursuit regression’. Proc. First Int. Conf. on Information Science and Engineering (ICISE2009), 2009, pp. 38273830.
    31. 31)
      • 31. Haiquan, Y., Gaoliang, P., Wenjian, L.: ‘An application of case based reasoning to predict structure maintainability’. Proc. Int. Conf. on Computational Intelligence and Software Engineering, 2009, pp. 15.
    32. 32)
      • 32. Nguyen, V., Boehm, B., Danphitsanuphan, P.: ‘A controlled experiment in assessing and estimating software maintenance tasks’, Inf. Softw. Technol., 2011, 53, (6), pp. 682691 (doi: 10.1016/j.infsof.2010.11.003).
    33. 33)
      • 33. Prabhakar, , Dutta, M.: ‘Prediction of software effort using artificial neural network and support vector machine’, Int. J. Adv. Res. Comput. Sci. Softw. Eng., 2013, 3, (3), pp. 4046.
    34. 34)
      • 34. Al-Jamimi, H.A., Ahmed, M.: ‘Prediction of software maintainability using fuzzy logic’. Proc. IEEE Third Int. Conf. on Software Engineering and Service Science (ICSESS), 2012, pp. 702705.
    35. 35)
      • 35. Mohantya, R., Ravib, V., Patrac, M.R.: ‘Hybrid intelligent systems for predicting software reliability’, Appl. Soft Comput., 2013, 13, (1), pp. 189200 (doi: 10.1016/j.asoc.2012.08.015).
    36. 36)
      • 36. Mandel Software: http://www.sipi.usc.edu/~mendel/software/.
    37. 37)
      • 37. Jang, R.J.S.: ‘ANFIS: adaptive-network-based fuzzy inference system’, IEEE Trans. Syst. ManCybern., 1993, 23, (3), pp. 66585 (doi: 10.1109/21.256541).
    38. 38)
      • 38. DeLucia, A., Pompella, E., Stefanucci, S.: ‘Assessing effort estimation models for corrective maintenance through empirical studies’, Inf. Softw. Technol., 2005, 47, (1), pp. 315 (doi: 10.1016/j.infsof.2004.05.002).
    39. 39)
      • 39. Shepperd, M., MacDonell, S.: ‘Evaluating prediction systems in software project estimation’, Inf. Softw. Technol., 2012, 54, (8), pp. 820827 (doi: 10.1016/j.infsof.2011.12.008).
    40. 40)
      • 40. Ahmed, M., Muzaffar, Z.: ‘Handling imprecision and uncertainty in software development effort prediction: a type-2 fuzzy logic based framework’, J. Inf. Softw. Technol., 2009, 51, (3), pp. 640654 (doi: 10.1016/j.infsof.2008.09.004).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2013.0046
Loading

Related content

content/journals/10.1049/iet-sen.2013.0046
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address