http://iet.metastore.ingenta.com
1887

Interactive animation system for virtual maize dynamic simulation

Interactive animation system for virtual maize dynamic simulation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Software — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Virtual plant modelling is becoming a hot issue both in computer graphics and agricultural researches. However, high-realistic plant modelling and plant animation is still a problem both in theory and applications. In this study, an interactive animation method for virtual maize dynamic simulation is presented, and an experimental system is developed by using C + + program language and OpenGL library. Firstly, true three-dimensional data and structural parameters of maize plant are collected as the foundation of modelling and animation. Secondly, an accurate virtual maize model is constructed based on interactive parameterised modelling. Constrained by logistic growth model, a group of key parameters is generated and precise maize animation with high-realistic visualisation is created according to the factual plant growth. Furthermore, an applied system is developed based on the proposed algorithm, and a set of simulation results are generated by use of the system. The results show that the proposed method is feasible for realistic dynamic simulation and animation of maize. Finally, main contributions and limitations of the authors work are discussed, and some problems are addressed as the future works.

References

    1. 1)
      • 1. Prusinkiewicz, P.: ‘Modeling of spatial structure and development of plants: a review’, Sci. Horticulturae, 1998, 74, (1–2), pp. 113149 (doi: 10.1016/S0304-4238(98)00084-3).
    2. 2)
      • 2. Prusinkiewicz, P.: ‘A look at the visual modeling of plants using L-systems’, Agronomie, 1999, 19, (3–4), pp. 211224 (doi: 10.1051/agro:19990303).
    3. 3)
      • 3. Guo, Y., Li, B.: ‘New advances in virtual plant research’, Chin. Sci. Bull., 2001, 46, (11), pp. 888894 (doi: 10.1007/BF02900459).
    4. 4)
      • 4. Lim, E., Honjo, T.: ‘Three-dimensional visualization forest of landscapes by VRML’, Landscape Urban Plan., 2003, 63, (3), pp. 175186 (doi: 10.1016/S0169-2046(02)00189-5).
    5. 5)
      • 5. Pommela, B., Sohbi, b.Y., Andrieu, B.: ‘Use of virtual 3D maize canopies to assess the effect of plot heterogeneity on radiation interception’, Agric. Forest Meteorol., 2001, 110, (1), pp. 5567 (doi: 10.1016/S0168-1923(01)00270-2).
    6. 6)
      • 6. Rey, H., Dauzat, J., Chenu, K., Barczi, J.F., Dosio, G.A.A., Lecoeur, J.: ‘Using a 3-D virtual sunflower to simulate light capture at organ, plant and plot levels: contribution of organ interception, impact of heliotropism and analysis of genotypic differences’, Ann.f Bot., 2008, 101, (8), pp. 11391151 (doi: 10.1093/aob/mcm300).
    7. 7)
      • 7. Wang, X., Guo, Y., Wang, X., Ma, Y., Li, B.: ‘Estimating photosynthetically active radiation distribution in maize canopies by a three-dimensional incident radiation model’, Funct. Plant Biol., 2008, 35, (9/10), pp. 867875 (doi: 10.1071/FP08054).
    8. 8)
      • 8. Cici, S., Adkins, S., Hanan, J.: ‘Modelling the morphogenesis of annual sowthistle, a common weed in crops’, Comput. Electron. Agric., 2009, 69, (1), pp. 4045 (doi: 10.1016/j.compag.2009.06.014).
    9. 9)
      • 9. España, M.L., Baret, F., Aries, F., Chelle, M., Andrieu, B., Pre'vote, L.: ‘Modeling maize canopy 3D architecture application to reflectance simulation’, Ecological Model., 1999, 122, (1–2), pp. 2543 (doi: 10.1016/S0304-3800(99)00070-8).
    10. 10)
      • 10. Lindenmayer, A.: ‘Mathematical models for cellular interactions in development, Parts I and II’, J. Theor. Biol., 1968, 18, (3), pp. 280315 (doi: 10.1016/0022-5193(68)90079-9).
    11. 11)
      • 11. Anastacio, F., Prusinkiwicz, P., Souza, M.C.: ‘Sketch-based parameterization of L-systems using illustration-inspired construction lines and depth modulation’, Comput. Graph., 2009, 33, (4), pp. 440451 (doi: 10.1016/j.cag.2009.05.001).
    12. 12)
      • 12. Siew, B.H., Talib, A.Z.: ‘Visual language framework for plant modeling using L-system’, Lect. Notes Comput. Sci., 2009, 5857, pp. 696707 (doi: 10.1007/978-3-642-05036-7_66).
    13. 13)
      • 13. Fang, Y., Wang, W., Han, Z., Zhang, T.: ‘An alhagi pseudalhagi roots model based on L-systems in virtual plant research’. Proc. 2010 Int. Conf. on Computer Application and System Modeling, 2010, Vol. 14, pp. 211214.
    14. 14)
      • 14. Ijiri, T., Owada, S., Igarashi, T.: ‘The sketch L-system: global control of tree modeling using free-form strokes’, Lect. Notes Comput. Sci., 2006, 4073, pp. 138146 (doi: 10.1007/11795018_13).
    15. 15)
      • 15. Hanan, J., Thornby, D., Adkins, S.: ‘Modelling cotton plant development with L-systems: a template model for incorporating physiology’. Proc. MODSIM 2005 Int. Congress on Modelling and Simulation, 2005, pp. 12431250.
    16. 16)
      • 16. Deussen, O.: ‘A framework for geometry generation and rendering of plants with applications in landscape architecture’, Landscape Urban Plann., 2003, 64, (1–2), pp. 105113 (doi: 10.1016/S0169-2046(02)00216-5).
    17. 17)
      • 17. Yang, H.S., Dobermann, A., Lindquist, J.L., Walters, D.T., Arkebauer, T.J., Cassman, K.G.: ‘Hybrid-maize – a maize simulation model that combines two crop modeling approaches’, Field Crops Res., 2004, 87, (2–3), pp. 131154 (doi: 10.1016/j.fcr.2003.10.003).
    18. 18)
      • 18. Zhao, X., Philippe, d.R., Xiong, F., Hu, B., Zhan, Z.: ‘Dual-scale automation model for virtual plant development’, Chin. J. Comput., 2001, 24, (6), pp. 608615.
    19. 19)
      • 19. Birch, C.J., Andrieu, B., Fournier, C., Vos, J., Room, P.: ‘Modelling kinetics of plant canopy architecture-concepts and applications’, Eur. J.f Agronomy, 2003, 19, (4), pp. 519533 (doi: 10.1016/S1161-0301(02)00183-1).
    20. 20)
      • 20. Letort, V., Mahe, P., Cournède, P.H., Philippe, d.R., Courtois, B.: ‘Quantitative genetics and functional–structural plant growth models: simulation of quantitative trait loci detection for model parameters and application to potential yield optimization’, Ann. Bot., 2008, 101, (8), pp. 12431254 (doi: 10.1093/aob/mcm197).
    21. 21)
      • 21. Guo, Y., Ma, Y., Zhan, Z., et al: ‘Parameter optimization and field validation of the functional–structural model GREENLAB for maize’, Ann. Bot., 2006, 97, (2), pp. 217230 (doi: 10.1093/aob/mcj033).
    22. 22)
      • 22. Renton, M., Kaitaniemi, P., Hanan, J.: ‘Functional–structural plant modelling using a combination of architectural analysis, L-systems and a canonical model of function’, Ecological Model., 2005, 184, (2–4), pp. 277298 (doi: 10.1016/j.ecolmodel.2004.10.008).
    23. 23)
      • 23. Ma, W., Xiang, B., Zha, H., Liu, J., Zhang, X.: ‘Modeling plants with sensor data’, Sci. China F: Inf. Sci., 2009, 52, (3), pp. 500511 (doi: 10.1007/s11432-009-0064-2).
    24. 24)
      • 24. Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., Kang, S.B.: ‘Image-based plant modeling’, ACM Trans. Graph., 2006, 25, (3), pp. 599604 (doi: 10.1145/1141911.1141929).
    25. 25)
      • 25. Prata, R., Frasson, M., Krajewski, W.F.: ‘Three-dimensional digital model of a maize plant’, Agric. Forest Meteorol., 2010, 150, (3), pp. 478488 (doi: 10.1016/j.agrformet.2010.01.003).
    26. 26)
      • 26. Xu, H., Gossett, N., Chen, B.: ‘Knowledge and heuristic based modeling of laser-scanned trees’, ACM Trans. Graph., 2007, 26, (4), pp. 303308 (doi: 10.1145/1289603.1289610).
    27. 27)
      • 27. Xiao, B., Guo, X., Du, X., Wen, W., Wang, X., Lu, S.: ‘An interactive digital design system for corn modeling’, Math. Comput. Model., 2010, 51, (11–12), pp. 13831389 (doi: 10.1016/j.mcm.2009.10.029).
    28. 28)
      • 28. Prusinkiewicz, P., Hammel, M., Mjolsness, E.: ‘Animation of plant development. proceedings of ACM SIGGRAPH 93’. Computer Graphics Proc. Annual Conf. Series, 1993, pp. 351360.
    29. 29)
      • 29. Rodkaew, Y., Somporn, C., Suchada, S., Lursinsap, C., Chongstitvatana, P.: ‘Animating plant growth in L-system by parametric functional symbols’, Int. J. Intell. Syst., 2004, 19, (1), pp. 923 (doi: 10.1002/int.10147).
    30. 30)
      • 30. Somporn, C., Jäger, W., Bock, H.G., Siripant, S.: ‘Smooth animation for plant growth using time embedded component and growth function’, East-West J. Math., Spec. Vol., 2002, pp. 285295.
    31. 31)
      • 31. Lam, Z., King, S.A.: ‘Animation of tree development’. Proc. Image and Vision Computing New Zealand, 2003, pp. 297302.
    32. 32)
      • 32. Akagi, Y., Kitajima, K.: ‘Computer animation of swaying trees based on physical simulation’, Comput. Graph., 2006, 30, (4), pp. 529539 (doi: 10.1016/j.cag.2006.03.017).
    33. 33)
      • 33. Fournier, C., Andrieu, B.: ‘A 3D architectural and process-based model of maize development’, Ann. Bot., 1998, 81, (2), pp. 233250 (doi: 10.1006/anbo.1997.0549).
    34. 34)
      • 34. Sinoquet, H., Moulia, B., Bonhomme, R.: ‘Estimating the three-dimensional geometry of a maize crop as an input of radiation models – comparison between 3-dimensional digitizing and plant profiles’, Agric. Forest Meteorol., 1991, 55, (3–4), pp. 233249 (doi: 10.1016/0168-1923(91)90064-W).
    35. 35)
      • 35. Sinoquet, H., Rivet, P.: ‘Measurement and visualization of the architecture of an adult tree based on a three-dimensional digitising device’, Trees-Struct. Funct., 1997, 11, (5), pp. 265270 (doi: 10.1007/s004680050084).
    36. 36)
      • 36. Chambelland, J.C., Dassot, M., Adam, B., et al: ‘A double-digitising method for building 3D virtual trees with non-planar leaves: application to the morphology and light-capture properties of young beech trees (Fagus sylvatica)’, Funct. Plant Biol., 2008, 35, (9–10), pp. 10591069 (doi: 10.1071/FP08051).
    37. 37)
      • 37. Morris, A.K., Silk, W.K.: ‘Use of a flexible logistic function to describe axial growth of plants’, Bull. Math. Biol., 1992, 54, (6), pp. 10691081.
    38. 38)
      • 38. Maddonni, G.A., Otegui, M.E., Andrieu, B., Chelle, M., Casal, J.J.: ‘Maize leaves turn away from neighbors’, Plant Physiol., 2002, 130, (3), pp. 11811189 (doi: 10.1104/pp.009738).
    39. 39)
      • 39. Shreiner, D., Woo, M., Neider, J., Davis, T.: ‘Open GL programming guide: the official guide to learning OpenGL’ (Addison-Wesly, 2004).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2012.0104
Loading

Related content

content/journals/10.1049/iet-sen.2012.0104
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address