Optimum relative speed discretisation for detection of moving objects in wide band SAR

Access Full Text

Optimum relative speed discretisation for detection of moving objects in wide band SAR

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here, Ground moving target indication (GMTI) using synthetic aperture radar (SAR) is considered. SAR GMTI requires that relative speed between the target and the SAR platform is included in the detection algorithm. A separation between the true relative speed and the relative speed used in the SAR process will cause unfocused targets, and decrease detectability. Blind hypotheses of relative speeds are used in the detection phase of moving targets in SAR. The step size between the hypotheses (or discretisation step) in relative speed involves a trade off between the number of hypotheses to test and detectability. A large number of tests will increase detectability but will also increase computation load and vice versa. The relevance of relative speed increases as the azimuth integration time gets larger. Long integration time is associated with low signature moving target detection in strong clutter environments, or for SAR GMTI at low frequencies. The optimum discretisation of normalised relative speed for moving target detection has been determined. The optimum discretisation is derived from the moving target impulse response. Use of optimum discretisation reduces the computation burden in SAR GMTI and secures the detectability.

Inspec keywords: synthetic aperture radar; object detection; radar imaging

Other keywords: ground moving target indication; wide band SAR; synthetic aperture radar; optimum relative speed discretisation; moving objects detection; blind hypotheses

Subjects: Radar equipment, systems and applications; Optical, image and video signal processing

References

    1. 1)
      • McCorkle, J., Rofheart, M.: `An order N2log(N) backprojector algorithm for focusing wide-angle wide-bandwidth arbitary-motion synthetic aperture radar', Proc. SPIE Conf. Radar Sensor Technology, 1996, Orlando, 2747, p. 25–36.
    2. 2)
      • S. Barbarossa . Detection and imaging of moving objects with synthetic aperture, Part 1: Optimum detection and parameter estimation theory. IEE Proc. F , 1 , 9 - 88
    3. 3)
    4. 4)
      • J.J. Sharma , C.H. Gierull , M.J. Collins . The influence of target acceleration on velocity estimation in dual-channel SAR-GMTI. IEEE Trans. Geosci. Remote Sensing , 1 , 134 - 147
    5. 5)
    6. 6)
      • M.I. Pettersson . Extraction of moving ground targets by a bistatic ultra-wideband and -widebeam SAR system. IEE Proc., Radar Sonar Navig. , 1 , 35 - 40
    7. 7)
      • A. Farina , P. Lombardo , M. Pirri . Nonlinear STAP processing. IEE Electron. Commun. Eng. J. , 41 - 48
    8. 8)
      • A. Farina , P. Lombardo , R. Klemm . (2004) Space time techniques for SAR, Applications of space-time Adaptive Processing.
    9. 9)
    10. 10)
      • R.K. Raney . Synthetic aperture imaging radar and moving targets. IEEE Trans. Aerosp. Electron. Syst. , 3 , 499 - 505
    11. 11)
    12. 12)
    13. 13)
      • J.A. Fawcett . Inversion of N-dimensional spherical averages. SIAM J. Appl. Math. , 2 , 336 - 341
    14. 14)
      • J.M.B. Dias , P.A.C. Marques . Multiple moving target detection and trajectory estimation using a single SAR sensor. IEEE Trans. Aerosp. Electron. Syst. , 2 , 604 - 624
    15. 15)
      • C.H. Gierull . Ground moving target parameter estimation for two-channel SAR. IEE Proc., Radar Sonar Navig. , 3 , 224 - 233
    16. 16)
      • Pettersson, M.: `Relative speed step size in SAR processing for moving target detection', Proc. 2006 CIE Int. Conf. Radar, October 2006, Shanghai, China, p. 991–995.
    17. 17)
      • Hellsten, H., Ulander, L.M.H.: `Airborne array aperture UWB UHF-motivation and system consideration', Proc. 1999 IEEE Radar Conf – Radar to the next millenium, 1999, Waltham, USA, p. 47–53.
    18. 18)
      • Pettersson, M.I.: `Focusing of moving targets in an ultra-wide band SAR GMTI system', Proc. EUSAR 2000, 3rd Eur. Conf. on Synthetic Aperture Radar, 2000, Germany, p. 837–840.
    19. 19)
      • R. Klemm . (1998) Space-time adaptive processing; principles and applications.
    20. 20)
      • Ward, J.: `Space -time processing for airborne radar', 1015, Technical Report No, 1994.
    21. 21)
      • F.M. Standaher , M. Skolnik . (1990) Airborne MTI, Radar handbook.
    22. 22)
      • Ulander, L.M.H., Frölind, P.O., Gustavsson, A., Hellsten, H., Larsson, B.: `Detection of concealed ground targets in CARABAS SAR images using change detection', Proc. SPIE Conf. Algorithms for Aperture Radar Imagery VI, 3721, 1999, Orlando, USA, p. 243–252.
    23. 23)
      • Adve, R.S., Wicks, M.C., Hale, T.B., Antonik, P.: `Ground moving target indication using knowledge based space time adaptive processing', IEEE Int. Radar Conf., 2000, USA, p. 735–740.
    24. 24)
      • J.K. Jao . Theory of synthetic aperture radar imaging of a moving target. IEEE Trans. Geosci. Remote Sensing , 9 , 1984 - 1992
    25. 25)
      • Pettersson, M.I., Zetterberg, V., Claesson, I.: `Detection and imaging of moving targets in wide band SAS using fast time back projection combined with STAP', Proc. Oceans 2005 MTS/IEEE Conf. ‘One Ocean’, 2005, USA.
    26. 26)
      • H.L.V. Trees . (1968) Detection estimation and modulation theory, Part I.
    27. 27)
      • L.E. Andersson . On determination of a function from spherical averages. SIAM J. Appl. Math. , 1 , 214 - 341
    28. 28)
      • C.J. Eaton , D.J. Coe . (2002) Motion of ground moving targets and implications for aided recognition, IEE radar.
    29. 29)
    30. 30)
      • C.E. Cook , M. Bernfeld . (1993) Radar signals – an introduction to theory and application.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn_20060082
Loading

Related content

content/journals/10.1049/iet-rsn_20060082
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading