access icon free Square-root cubature Kalman filter-based vector tracking algorithm in GPS signal harsh environments

In a vector tracking loop (VTL) architecture, non-linearities exist in discriminator functions and pseudo-range/pseudo-range rate measurement expressions. Generally, normalisation functions are used in discriminators to export the desired code phase or carrier frequency error and the extended Kalman filter is adopted to estimate receiver's states. This process could be accurate enough when the code phase or carrier frequency error approaches zero in the signal moderate environment but begins to distort due to non-linearity when the tracking errors become large in harsh situations. This finally narrows the applicable range of VTL. To overcome this issue, a square-root cubature Kalman filter (CKF)-based VTL is designed in this study. The discriminator functions are employed directly as measurements of navigation filter, and the non-linear expressions of discriminator functions in terms of the receiver's position, velocity, and time states are derived without normalisation. Then the CKF, which is competitive in high-dimensional non-linear systems, is employed in its square-root version to estimate the position, velocity, acceleration, and time states of the receiver. Comparison trial results between traditional and proposed VTL illustrate that the proposed algorithm can not only keep a superior tracking accuracy but also improves the tracking stability of VTL in <20 dB-Hz signal harsh circumstances.

Inspec keywords: Kalman filters; Global Positioning System; nonlinear filters

Other keywords: square-root cubature Kalman filter-based VTL; signal moderate environment; GPS signal harsh environments; nonlinearities; tracking errors; superior tracking accuracy; normalisation functions; nonlinear expressions; navigation filter; time states; discriminator functions; discriminators; 20 dB Hz signal harsh circumstances; extended Kalman filter; vector tracking loop architecture; square-root cubature Kalman filter-based vector tracking algorithm; harsh situations; nonlinear systems; desired code phase; traditional proposed VTL; square-root version

Subjects: Other topics in statistics; Filtering methods in signal processing; Radionavigation and direction finding

References

    1. 1)
      • 2. Parkinson, B.W., Spilker, J.J.Jr., Axelrad, P., et al: ‘Fundamentals of signal tracking theory’, in Parkinson, B.W., Spilker, J.J.Jr. (Eds.): ‘Global positioning system. Theory and applications’ (AIAA, Washington, DC, USA, 1996), pp. 245325.
    2. 2)
      • 29. Hu, G., Gao, S., Zhong, Y.: ‘A derivative UKF for tightly coupled INS/GPS integrated navigation’, ISA Trans., 2015, 56, pp. 135144.
    3. 3)
      • 8. Xu, B., Jia, Q., Hsu, L.T.: ‘Vector tracking loop-based GNSS NLOS detection and correction: algorithm design and performance analysis’, IEEE Trans. Instrum. Meas., 2020, 69, (7), pp. 46044619.
    4. 4)
      • 4. Hsu, L.T., Jan, S.S., Groves, P.D., et al: ‘Multipath mitigation and NLOS detection using vector tracking in urban environments’, GPS Solut., 2015, 19, (2), pp. 249262.
    5. 5)
      • 13. Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: ‘A new approach for filtering nonlinear systems’. Proc. of 1995 American Control Conf.-ACC'95, Seattle, USA, 1995, pp. 16281632.
    6. 6)
    7. 7)
      • 6. Jiang, C., Chen, S., Chen, Y., et al: ‘Research on a chip scale atomic clock aided vector tracking loop’, IET Radar Sonar Navig., 2019, 13, (7), pp. 11011106.
    8. 8)
      • 14. Ito, K., Xiong, K.: ‘Gaussian filters for nonlinear filtering problems’, IEEE Trans. Autom. Control, 2000, 45, (5), pp. 910927.
    9. 9)
      • 27. Liu, J., Cai, B., Wang, J.: ‘Cooperative localization of connected vehicles: integrating GNSS with DSRC using a robust cubature Kalman filter’, IEEE Trans. Intell. Transp. Syst., 2016, 18, (8), pp. 21112125.
    10. 10)
      • 15. Julier, S.J., Uhlmann, J.K.: ‘Unscented filtering and nonlinear estimation’, Proc. IEEE, 2004, 92, (3), pp. 401422.
    11. 11)
      • 1. Copps, E.M., Geier, G.J., Fidler, W.C., et al: ‘Optimal processing of GPS signals’, Navigation, 1980, 27, (3), pp. 171182.
    12. 12)
      • 17. Jia, B., Xin, M., Cheng, Y.: ‘High-degree cubature Kalman filter’, Automatica, 2013, 49, (2), pp. 510518.
    13. 13)
      • 10. Brewer, J., Raquet, J.: ‘Differential vector phase locked loop’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (3), pp. 10461055.
    14. 14)
      • 12. Ng, Y., Gao, G.X.: ‘GNSS multireceiver vector tracking’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (5), pp. 25832593.
    15. 15)
      • 25. Shen, C., Zhang, Y., Tang, J., et al: ‘Dual-optimization for a MEMS-INS/GPS system during GPS outages based on the cubature Kalman filter and neural networks’, Mech. Syst. Signal Process., 2019, 133, p. 106222.
    16. 16)
      • 5. Xu, B., Hsu, L.T.: ‘Open-source MATLAB code for GPS vector tracking on a software-defined receiver’, GPS Solut., 2019, 23, (2), p. 46.
    17. 17)
      • 9. Henkel, P., Giger, K., Gunther, C.: ‘Multifrequency, multisatellite vector phase-locked loop for robust carrier tracking’, IEEE. J. Sel. Top. Signal. Process., 2009, 3, (4), pp. 674681.
    18. 18)
      • 7. Zhang, X., Li, H., Yang, C., et al: ‘Signal quality monitoring-based spoofing detection method for global navigation satellite system vector tracking structure’, IET Radar Sonar Navig., 2020, 14, (6), pp. 944953.
    19. 19)
      • 22. Yang, Y., Li, B., Wu, X., et al: ‘Application of adaptive cubature Kalman filter to in-pipe survey system for 3D small-diameter pipeline mapping’, IEEE Sens. J., 2020, 20, (12), pp. 63316337.
    20. 20)
      • 16. Arasaratnam, I., Haykin, S.: ‘Cubature Kalman filters’, IEEE Trans. Autom. Control, 2009, 54, (6), pp. 12541269.
    21. 21)
      • 3. Lashley, M., Bevly, D.M., Hung, J.Y.: ‘Performance analysis of vector tracking algorithms for weak GPS signals in high dynamics’, IEEE. J. Sel. Top. Signal. Process., 2009, 3, (4), pp. 661673.
    22. 22)
      • 23. Cui, B., Chen, X., Tang, X.: ‘Improved cubature Kalman filter for GNSS/INS based on transformation of posterior Sigma-points error’, IEEE Trans. Signal Process., 2017, 65, (11), pp. 29752987.
    23. 23)
      • 32. Lin, H., Huang, Y., Tang, X., et al: ‘A robust vector tracking loop based on diagonal weighting matrix for navigation signal’, Adv. Space Res., 2017, 60, (12), pp. 26072619.
    24. 24)
      • 31. Groves, P.D.: ‘Satellite navigation processing, errors, and geometry’, in Groves, P.D. (Ed.): ‘Principles of GNSS, inertial, and multisensor integrated navigation systems’ (Artech house, Boston, MA, USA, 2013, 2nd edn.), pp. 229240.
    25. 25)
      • 20. Zhu, J., Liu, B., Wang, H., et al: ‘State estimation based on improved cubature Kalman filter algorithm’, IET Sci. Meas. Technol., 2020, 14, (5), pp. 536542.
    26. 26)
      • 19. Hao, G., Sun, S.: ‘Distributed fusion cubature Kalman filters for nonlinear systems’, Int. J. Robust Nonlinear Control, 2019, 29, (17), pp. 59795991.
    27. 27)
      • 11. Sun, Z., Wang, X., Feng, S., et al: ‘Design of an adaptive GPS vector tracking loop with the detection and isolation of contaminated channels’, GPS Solut., 2017, 21, (2), pp. 701713.
    28. 28)
      • 28. He, C., Tang, C., Yu, C.: ‘A federated derivative cubature Kalman filter for IMU-UWB indoor positioning’, Sensors, 2020, 20, (12), p. 3514.
    29. 29)
      • 30. Xie, F., Sun, R., Kang, G., et al: ‘A jamming tolerant BeiDou combined B1/B2 vector tracking algorithm for ultra-tightly coupled GNSS/INS systems’, Aerosp. Sci. Technol., 2017, 70, pp. 265276.
    30. 30)
      • 18. Shi, Y., Tang, X., Feng, X., et al: ‘Hybrid adaptive cubature Kalman filter with unknown variance of measurement noise’, Sensors, 2018, 18, (12), p. 4335.
    31. 31)
      • 24. Liu, X., Qu, H., Zhao, J., et al: ‘Maximum correntropy square-root cubature Kalman filter with application to SINS/GPS integrated systems’, ISA Trans., 2018, 80, pp. 195202.
    32. 32)
      • 21. Zhao, Y.: ‘Performance evaluation of cubature Kalman filter in a GPS/IMU tightly-coupled navigation system’, Signal Process., 2016, 119, pp. 6779.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2020.0317
Loading

Related content

content/journals/10.1049/iet-rsn.2020.0317
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading