Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free One-dimensional traversal receiver autonomous integrity monitoring method based on maximum likelihood estimation for GNSS anti-spoofing applications

By forging global navigation satellite system (GNSS) signals similar to authentic ones, a spoofer can make receivers track forged signals (spoofing signals) and generate wrong position, velocity and time results. Receiver autonomous integrity monitoring (RAIM) can be extended to the field of spoofing detection and exclusion (SDE). However, it is well known that when there are six or more signals and only one spoofing signal among them, RAIM can effectively exclude the spoofing signal. In this study, based on maximum likelihood estimation (MLE) theory and the idea of the traverse, one-dimensional traversal MLE-RAIM (TMRAIM) is proposed, which can exclude multiple spoofing signals. Theoretically, the influence of spoofing biases will be reflected in pseudorange residuals, and then affect the probability distribution of the parity vector. Through MLE deduction, the authors can find corresponding spoofing signals which are relevant with the maximum probability of the parity vector only once under the supposed number of spoofing signals. By just traversing the number of spoofing signals, TMRAIM can run effectively on real-time GNSS receivers with low complexity. The SDE ability and time complexity are analysed in detail and two field experiments are constructed. Experimental results demonstrate the method is feasible and effective for anti-spoofing applications.

References

    1. 1)
      • 24. Li, J., Li, H., Peng, C., et al: ‘Research on the random traversal RAIM method for anti-spoofing applications’. Proc. China Satellite Navigation Conf. (CSNC), Beijing, China, May 2019, pp. 593605.
    2. 2)
      • 23. Choi, M., Blanch, J., Walter, T., et al: ‘Evaluation of multi-constellation advanced RAIM for vertical guidance using GPS and GLONASS signals with multiple faults’. Proc. of the 25th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, September 2012, pp. 884892.
    3. 3)
      • 18. Wu, Q., Zheng, J., Dong, Z., et al: ‘Interference detection algorithm based on adaptive subspace tracking and RAIM for GNSS receiver’, IET Radar Sonar Navig., 2018, 12, (9), pp. 10281037.
    4. 4)
      • 8. Pan, W., Zhan, X., Zhang, X.: ‘Fault exclusion method for ARAIM based on tight GNSS/INS integration to achieve CAT-I approach’, IET Radar Sonar Navig., 2019, 13, (11), pp. 19091917.
    5. 5)
      • 29. Humphreys, T.E., Ledvina, B.M., Psiaki, M.L., et al: ‘Assessing the spoofing threat: development of a portable GPS civilian spoofer’. Proc. of the 21st Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008), Savannah, GA, September 2008, pp. 23142325.
    6. 6)
      • 17. Zabalegui, P., De Miguel, G., Pérez, A., et al: ‘A review of the evolution of the integrity methods applied in GNSS’, IEEE Access, 2020, 8, pp. 4581345824.
    7. 7)
      • 22. Innac, A., Bhuiyan, M.Z.H., Söderholm, S., et al: ‘Reliability testing for multiple GNSS measurement outlier detection’. 2016 European Navigation Conf. (ENC), Helsinki, 2016, pp. 18.
    8. 8)
      • 1. Juang, J.-C.: ‘Analysis of global navigation satellite system position deviation under spoofing’, IET Radar Sonar Navig., 2009, 3, (1), pp. 17.
    9. 9)
      • 16. Tao, H., Li, H., Zhang, W., et al: ‘A recursive receiver autonomous integrity monitoring (recursive-RAIM) technique for GNSS anti-spoofing’. Proc. of the 2015 Int. Technical Meeting of the Institute of Navigation, Dana Point, California, January 2015, pp. 738744.
    10. 10)
      • 5. Bhatti, J., Humphreys, T.E.: ‘Hostile control of ships via false GPS signals: demonstration and detection’, Navigation, 2017, 64, (1), pp. 5166.
    11. 11)
      • 19. Martini, I., Hein, G.W.: ‘An integrity monitoring technique for multiple failures detection’. Proc. of IEEE/ION PLANS 2006, San Diego, CA, April 2006, pp. 450467.
    12. 12)
      • 2. Zhai, Y., Zhan, X., Joerger, M., et al: ‘Impact quantification of satellite outages on air navigation continuity’, IET Radar Sonar Navig., 2019, 13, (3), pp. 376383.
    13. 13)
      • 27. He, L., Li, H., Lu, M., et al: ‘A fundamental architecture of anti-spoofing GNSS receiver’. Proc. China Satellite Navigation Conf. (CSNC), Xi'an, China, May 2017, pp. 899909.
    14. 14)
      • 6. Psiaki, M.L., Humphreys, T.E.: ‘GNSS spoofing and detection’, Proc. IEEE, 2016, 104, (6), pp. 12581270.
    15. 15)
      • 12. Sturza, M.A.: ‘Navigation system integrity monitoring using redundant measurements’, Navigation, 1988, 35, (4), pp. 483501.
    16. 16)
      • 11. Parkinson, B.W., Axelrad, P.: ‘Autonomous GPS integrity monitoring using the pseudorange residual’, Navigation, 1988, 35, (2), pp. 255274.
    17. 17)
      • 32. Peng, C., Li, H., Lu, M., et al: ‘Research on the responses of GNSS tracking loop to intermediate spoofing’. Proc. of the 32nd Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS + 2019), Miami, Florida, September 2019, pp. 943952.
    18. 18)
      • 31. Peng, C., Li, H., Wen, J., et al: ‘Research of intermediate spoofing without precise target information’. Proc. China Satellite Navigation Conf. (CSNC), Beijing, China, May 2019, pp. 615624.
    19. 19)
      • 14. Liu, J., Lu, M., Cui, X., et al: ‘Theoretical analysis of RAIM in the occurrence of simultaneous two-satellite faults’, IET Radar Sonar Navig., 2007, 1, (2), pp. 9297.
    20. 20)
      • 9. Brown, R.G.: ‘A baseline GPS RAIM scheme and a note on the equivalence of three RAIM methods’, Navigation, 1992, 39, (3), pp. 301316.
    21. 21)
      • 25. Closas, P., Fernandez-Prades, C., Fernandez-Rubio, J.A.: ‘Maximum likelihood estimation of position in GNSS’, IEEE Signal Process. Lett., 2007, 14, (5), pp. 359362.
    22. 22)
      • 21. Feng, S., Jokinen, A., Ochieng, W., et al: ‘Multi-constellation RAIM in the presence of multiple faults – a bottom up approach’. Proc. of the 25th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, September 2012, pp. 28582867.
    23. 23)
      • 7. Schmidt, D., Radke, K., Camtepe, S., et al: ‘A survey and analysis of the GNSS spoofing threat and countermeasures’, ACM Comput. Surv., 2016, 48, (4), pp. 131.
    24. 24)
      • 13. Juang, J.-C., Jang, C.-W.: ‘Failure detection approach applying to GPS autonomous integrity monitoring’, IEE Proc., Radar Sonar Navig., 1998, 145, (6), pp. 342346.
    25. 25)
      • 30. Kaplan, E.D.: ‘Understanding GPS: principles and applications’ (Artech House, USA, 2006).
    26. 26)
      • 10. Kalafus, R.M., Chin, G.Y.: ‘Performance measures of receiver-autonomous GPS integrity monitoring’. Institute of Navigation, Santa Barbara, CA, USA, 1988, pp. 223229.
    27. 27)
      • 3. Carroll, J.V., Van, D.K., Kraemer, J.H., et al: ‘Vulnerability assessment of the U.S. Transportation infrastructure that relies on GPS’. Proc. of the 14th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001), Salt Lake City, UT, September 2001, pp. 975981.
    28. 28)
      • 20. Ni, J., Zhu, Y., Guo, W.: ‘An improved RAIM scheme for processing multiple outliers in GNSS’. 21st Int. Conf. on Advanced Information Networking and Applications Workshops (AINAW 2007), Niagara Falls, Ont., 2007, pp. 840845.
    29. 29)
      • 15. Madonna, P., Viola, S., Sfarzo, L.: ‘NIORAIM algorithm applied to a multiconstellation GNSS: analysis of integrity monitoring performances in various phases of flight’. Proc. of IEEE/ION PLANS 2010, Indian Wells, CA, May 2010, pp. 12581263.
    30. 30)
      • 28. Guo, Y., Miao, L., Zhang, X.: ‘Spoofing detection and mitigation in a multi-correlator GPS receiver based on the maximum likelihood principle’, Sensors, 2019, 19, (1), pp. 137.
    31. 31)
      • 26. Wang, F., Li, H., Lu, M.: ‘GNSS spoofing detection and mitigation based on maximum likelihood estimation’, Sensors, 2017, 17, (7), p. 1532.
    32. 32)
      • 4. Kerns, A.J., Shepard, D.P., Bhatti, J.A., et al: ‘Unmanned aircraft capture and control via GPS spoofing’, J. Field Robot., 2014, 31, (4), pp. 617636.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2020.0186
Loading

Related content

content/journals/10.1049/iet-rsn.2020.0186
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address