access icon free Double-adaptive chirplet transform for radar signature extraction

This study presents a novel method for time–frequency (TF) signal analysis and chirp rate estimation dedicated for electromagnetic spectrum sensing, electronic warfare, electronic intelligence and/or passive bistatic radar purposes in which frequency modulated signals occur. The approach is based on the double-adaptive chirplet transform, providing optimal analysis window parameters, which is a crucial problem during TF processing. The presented methodology is based on a Gaussian window with two degrees of freedom, which results in a strong concentration of energy on the TF plane around the main component, even if the initial window parameters were mismatched. As an example of the method's usefulness, different types of real-life radar pulses were processed: firstly, two types of non-linear frequency-modulated waveforms were examined as a suitable illustration of the changeability of the analysis window parameters. Secondly, the linear frequency modulated signals were analysed in the presence of strong interference and multipath propagation. The waveforms were processed and compared, creating individual radar signatures, which may allow transmitter classification and signal reconstruction to be carried out in further processing. Moreover, the estimation limitations were compared to the Cramer-Rao lower bound, and an appendix organising mathematical fundamentals for the analysed methods is provided.

Inspec keywords: signal reconstruction; signal processing; passive radar; time-frequency analysis; Gaussian processes; signal detection; frequency modulation; radar signal processing; radar detection; signal sampling; transforms

Other keywords: estimation limitations; transmitter classification; double-adaptive chirplet; chirp rate estimation; electronic intelligence; optimal analysis window parameters; Gaussian window; initial window parameters; signal reconstruction; passive bistatic radar purposes; nonlinear frequency-modulated waveforms; degrees of freedom; linear frequency modulated signals; TF processing; method; individual radar signatures; real-life radar pulses; time–frequency signal analysis; electromagnetic spectrum sensing; TF plane; analysed methods; radar signature extraction

Subjects: Signal detection; Radar equipment, systems and applications; Other topics in statistics; Signal processing and detection

References

    1. 1)
      • 31. Czarnecki, K., Moszyński, M.: ‘A novel method of local chirp-rate estimation of LFM chirp signals in the time-frequency domain’. 2013 36th Int. Conf. on Telecommunications and Signal Processing (TSP), Rome, 2013, pp. 704708.
    2. 2)
      • 29. Auger, F., Chassande-Mottin, É., Flandrin, P.: ‘On phase-magnitude relationships in the short-time Fourier transform’, IEEE Signal Process. Lett., 2012, 19, (5), pp. 267270.
    3. 3)
      • 4. Kuschel, H., Heckenbach, J., Schell, J., et al: ‘DVB-T passive radar systems PETRA/CORA’. Proc. of 2nd FHR Focus Days on PCL, Wachtberg, Germany, 17–18 November 2009.
    4. 4)
      • 13. Wei, Y., Bi, G.: ‘Robust STFT with adaptive window length and rotation direction’. Fourth Int. Conf. on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conf. on Multimedia. Proc. of the 2003 Joint, Singapore, 2003, vol. 2, pp. 827829.
    5. 5)
      • 32. Abratkiewicz, K., Samczyński, P., Czarnecki, K.: ‘Radar signal parameters estimation using phase accelerogram in the time–frequency domain’, IEEE Sens. J., 2019, 19, (13), pp. 50785085.
    6. 6)
      • 2. Fränken, D., Zeeb, O.: ‘Advances in real-time tracking and data fusion using multiple passive radar sensors’. 2019 20th Int. Radar Symp. (IRS), Ulm, Germany, 26–28 June 2019, pp. 110.
    7. 7)
      • 33. Abratkiewicz, K., Samczyński, P.: ‘A block method utilizing the chirp rate estimation for NLFM radar pulse reconstruction’, Sensors, 2019, 19, p. 5015, https://www.mdpi.com/1424-8220/19/22/5015.
    8. 8)
      • 18. Xie, H., Lin, J., Lei, Y., et al: ‘Fast-varying AM–FM components extraction based on an adaptive STFT’, Digit. Signal Process., 2012, 22, (4), pp. 664670.
    9. 9)
      • 39. Raytheon website, ASR-10SS Solid-State Primary Surveillance Radar, Available at https://www.raytheon.com/capabilities/products/asr10ss.
    10. 10)
      • 8. Samczyński, P., Krysik, P., Kulpa, K.: ‘Passive radars utilising pulse radars as illuminators of opportunity’. Proc. of the 2015 IEEE RADAR Conf., Johannesburg, South Africa, 27–30 October 2015.
    11. 11)
      • 10. Kuschel, H., Heckenbach, J., Schell, J.: ‘Deployable multiband passive/active radar for air defense (DMPAR)’, IEEE Aerosp. Electron. Syst. Mag., 2013, 28, (9), pp. 3745.
    12. 12)
      • 1. Fränken, D., Zeeb, O.: ‘Real-time creation of a target situation picture with the HENSOLDT passive radar system’. Proc. 21st ISIF Int. Conf. on Information Fusion (FUSION), Cambridge, UK, 2018, pp. 513519.
    13. 13)
      • 9. Roszkowski, P., Samczyński, P., Malanowski, M., et al: ‘Passive radar utilizing early warning VHF radar as illuminator of opportunity’. Proc. of NATO Specialist Meeting SET-187, Szczecin, Poland, 13–14 May 2013.
    14. 14)
      • 21. Tao, R., Li, Y., Wang, Y.: ‘Short-time fractional Fourier transform and its applications’, IEEE Trans. Signal Process., 2010, 58, (5), pp. 25682580.
    15. 15)
      • 35. Abratkiewicz, K., Krysik, P., Gajo, Z., et al: ‘Target Doppler rate estimation based on the complex phase of STFT in passive forward scattering radar’, Sensors, 2019, 19, p.3627.
    16. 16)
      • 5. Brenner, T., Kasprzak, P., Lamentowski, L.: ‘Tracking algorithm in the multiband PCL-PET fusion system’. Proc. of 2014 15th Int. Radar Symp. (IRS), Gdansk, Poland, 16–18 June 2014, pp. 15.
    17. 17)
      • 12. Brenner, T., Weiss, G., Klein, M., et al: ‘Signals and data fusion in a deployable multiband passive-active radar (DMPAR)’. IET Int. Conf. on Radar Systems (Radar 2012), Glasgow, UK, 2012, pp. 16.
    18. 18)
      • 27. Abratkiewicz, K., Samczyński, P.: ‘An adaptive spectrogram and accelerogram algorithm for electronic warfare applications’. submitted for publications, Proc. of 2020 IEEE Int. Radar Conf., Washington DC, USA, 27 April – 1 May 2020.
    19. 19)
      • 25. Hussain, Z.M., Boashash, B.: ‘Adaptive instantaneous frequency estimation of multicomponent FM signals using quadratic time-frequency distributions’, IEEE Trans. Signal Process., 2002, 50, (8), pp. 18661876.
    20. 20)
      • 30. Fourer, D., Auger, F., Czarnecki, K., et al: ‘Chirp rate and instantaneous frequency estimation: application to recursive vertical synchrosqueezing’, IEEE Signal Process. Lett., 2017, 24, (11), pp. 17241728.
    21. 21)
      • 17. Zhu, M., Zhang, X., Qi, Y.: ‘An adaptive STFT using energy concentration optimization’. 2015 10th Int. Conf. on Information, Communications and Signal Processing (ICICS), Singapore, 2015, pp. 14.
    22. 22)
      • 23. Katkovnik, V., Stankovic, L.: ‘Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length’, IEEE Trans. Signal Process., 1998, 46, (9), pp. 23152325.
    23. 23)
      • 20. Gulum, T.O., Erdogan, A.Y., Durak-Ata, L., et al: ‘Elliptic Gaussian filtering for time–frequency signal analysis’. 2013 IEEE Radar Conf. (RadarCon13), Ottawa, ON, 2013, pp. 15.
    24. 24)
      • 36. Czarnecki, K.: ‘The instantaneous frequency rate spectrogram’, Mech. Syst. Signal Process., 2016, 66, pp. 361373.
    25. 25)
      • 14. Li, L., Cai, H., Han, H., et al: ‘Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation’, Signal Process., 2020, 166, p. 107231.
    26. 26)
      • 22. Chen, X., Guan, J., Bao, Z., et al: ‘Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (2), pp. 10021018.
    27. 27)
      • 26. Cui, J., Wong, W.: ‘The adaptive chirplet transform and visual evoked potentials’, IEEE Trans. Biomed. Eng., 2006, 53, (7), pp. 13781384.
    28. 28)
      • 16. Pei, S., Huang, S.: ‘Adaptive STFT with chirp-modulated Gaussian window’. 2018 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, 2018, pp. 43544358.
    29. 29)
      • 3. Bičík, P.: ‘Passive radar: here comes the new generation VERA-NG’. 11th Int. Radar Symp. (IRS), Vilnius, Lithuania, 16–18 June 2010, pp. 14.
    30. 30)
      • 11. Stejskal, V., Kuschel, H., Brenner, T., et al: ‘DETOUR trials: the mission and its results’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017, pp. 114.
    31. 31)
      • 34. Abratkiewicz, K., Gromek, D., Samczyński, P.: ‘Chirp rate estimation and micro-Doppler signatures for pedestrian security radar systems’. 2019 Signal Processing Symp. (SPSympo), Krakow, Poland, 2019, pp. 212215.
    32. 32)
      • 19. Mann, S., Haykin, S.: ‘Adaptive ‘chirplet’ transform: an adaptive generalization of the wavelet transform’, Opt. Eng., 1992, 31, (6), pp. 12431256.
    33. 33)
      • 6. Brenner, T., Kasprzak, P., Lamentowski, L.: ‘Position estimation in the multiband PCL-PET fusion system’. Proc. Int. Radar Symp. (IRS), Gdansk, Poland, 2014, pp. 369372.
    34. 34)
      • 38. Samczyński, P., Krysik, P., Kulpa, K.: ‘Passive radars utilizing pulse radars as illuminators of opportunity’. 2015 IEEE Radar Conf., Johannesburg, 2015, pp. 168173.
    35. 35)
      • 28. Czarnecki, K., Fourer, D., Auger, F., et al: ‘A fast time-frequency multi-window analysis using a tuning directional kernel’, Signal Process., 2018, 147, pp. 110119.
    36. 36)
      • 15. Czerwinski, R.N., Jones, D.L.: ‘Adaptive short-time Fourier analysis’, IEEE Signal Process. Lett., 1997, 4, (2), pp. 4245.
    37. 37)
      • 7. Samczyński, P., Wilkowski, M., Kulpa, K.: ‘Trial results on bistatic passive radar using non-cooperative pulse radar as illuminator of opportunity’, INTL Int. J. Electron. Telecommun., 2012, 58, (2), pp. 171176.
    38. 38)
      • 37. Cohen, L.: ‘Time-frequency analysis: theory and applications’ (Prentice-Hall, Englewood Cliffs, NJ, 1995).
    39. 39)
      • 24. Alkishriwo, O.A., Akan, A., Chaparro, L.F.: ‘Intrinsic mode chirp decomposition of non-stationary signals’, IET Signal Process., 2014, 8, (3), pp. 267276.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2020.0084
Loading

Related content

content/journals/10.1049/iet-rsn.2020.0084
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading