access icon free Improved DOA estimation method by distinction of different transmit signals in automotive MIMO frequency-modulated continuous wave radar systems

This study proposes an advanced direction-of-arrival (DOA) estimation method for automotive multiple-input multiple-output (MIMO) fast-ramp radar systems. To distinguish the transmitted signal at the receiving antenna, the orthogonal code can be applied to each transmitted signal. In this case, to correctly estimate the angles of the targets, the authors also have to match the distinguished signals to each transmit antenna element. In this study, they use the space-time block code to distinguish the transmitted signals from the receiving antennas. Furthermore, by applying the deterministic maximum likelihood algorithm to each of the distinguished signals, they can find the true antenna array for DOA estimation and achieve higher estimation accuracy than false antenna array cases. Furthermore, the maximum detectable velocity is doubled compared to the conventional decoding method. In the simulation results, the proposed method provides a three degree smaller root-mean-squared error compared to the case when it is not applied. The proposed method also estimates the DOAs of the targets well at low signal-to-noise ratios. In addition, the effectiveness of the proposed method was verified by measurement results.

Inspec keywords: mean square error methods; antenna arrays; receiving antennas; orthogonal codes; direction-of-arrival estimation; maximum likelihood estimation; CW radar; MIMO communication; transmitting antennas

Other keywords: distinguished signals; higher estimation accuracy; transmit antenna element; DOA estimation method; signal-to-noise ratios; multiple-input multiple-output fast-ramp radar systems; automotive MIMO frequency-modulated; transmitted signal; false antenna array cases; receiving antenna; conventional decoding method; space-time block code; direction-of-arrival estimation method; different transmit signals

Subjects: Interpolation and function approximation (numerical analysis); Radar equipment, systems and applications; Antenna arrays; Codes; Other topics in statistics; Signal processing and detection; Radio links and equipment

References

    1. 1)
      • 26. de Wit, J.J.M., van Rossum, W.L., de Jong, A.J.: ‘Orthogonal waveforms for FMCW MIMO radar’. IEEE Radar Conf., Kansas City, MO, USA, May 2011, pp. 686691.
    2. 2)
      • 14. Rohling, H., Moller, C.: ‘Radar waveform for automotive radar systems and applications’. IEEE Radar Conf.., Rome, Italy, May 2008, pp. 14.
    3. 3)
      • 16. Winkler, V.: ‘Range Doppler detection for automotive FMCW radars’. 2007 European Radar Conf.., Munich, Germany, October 2007, pp. 166169.
    4. 4)
      • 12. Sim, H., Lee, S., Lee, B.-H., et al: ‘Road structure classification through artificial neural network for automotive radar systems’, IET Radar Sonar Navig., 2019, 13, (6), pp. 10101017.
    5. 5)
      • 1. BIS Research: ‘Global automotive sensor market demand, supply and opportunities: estimation and forecast of (2015–2022)’ (BIS Research, Fremont, CA, USA, 2015), pp. 148.
    6. 6)
      • 27. Zwanetski, A., Rohling, H.: ‘Continuous wave MIMO radar based on time division multiplexing’. Proc. Int. Radar Symp., Warsaw, Poland, May 2012, pp. 119121.
    7. 7)
      • 25. Lutz, S., Baur, K., Walter, T.: ‘77 GHz lens-based multistatic MIMO radar with colocated antennas for automotive applications’. IEEE Microwave Symp. Dig., Montreal, QC, Canada, June 2012, pp. 13.
    8. 8)
      • 7. Sim, H., Lee, S., Kang, S., et al: ‘Enhanced DOA estimation using linearly predicted array expansion for automotive radar systems’, IEEE Access, 2019, 7, (1), pp. 4771447727.
    9. 9)
      • 17. Lutz, S., Ellenrieder, D., Walter, T., et al: ‘On fast chirp modulations and compressed sensing for automotive radar applications’. Proc. Int. Radar Symp., Gdansk, Poland, June 2014, pp. 16.
    10. 10)
      • 28. Tarokh, V., Seshachi, N., Calderbank, A.R.: ‘Space-time codes for high data rate wireless communications: performance analysis and code construction’, IEEE Trans. Inf. Theory, 1998, 44, (2), pp. 744765.
    11. 11)
      • 19. Li, J., Stoica, P.: ‘MIMO radar with colocated antennas’, IEEE Signal Process. Mag., 2007, 24, (5), pp. 106114.
    12. 12)
      • 33. Bliss, D.W., Forsythe, K.W.: ‘Multiple-input mutiple-output (MIMO) radar and imaging: degrees of freedom and resolution’. Proc. 37th Asilomar Conf. Signals. Syst. Comput., Pacific Grove, CA, USA, November 2003, pp. 5459.
    13. 13)
      • 35. Schmidt, R.O.: ‘Multiple emitter location and signal parameter estimation’, IEEE Trans. Antennas Propag., 1986, 34, (3), pp. 276280.
    14. 14)
      • 9. Lee, S., Yoon, Y.-J., Lee, J.-E., et al: ‘Human-vehicle classification using feature-based SVM in 77-GHz automotive FMCW radar’, IET Radar Sonar Navig., 2017, 11, (10), pp. 15891596.
    15. 15)
      • 32. Bohme, J.F.: ‘Estimation of source parameters by maximum likelihood and nonlinear regression’. Proc. ICASSP 84, San Diego, CA, USA, March 1984, pp. 7.3.17.3.4.
    16. 16)
      • 11. Yoon, J., Lee, S., Lim, S., et al: ‘High-density clutter recognition and suppression for automotive radar systems’, IEEE Access, 2019, 7, (1), pp. 5836858380.
    17. 17)
      • 24. Klare, J., Saalmann, O., Wilden, H., et al: ‘First experimental results with the imaging MIMO radar MIRA-CLE X’. 2010 8th European Conf. on Synthetic Aperture Radar (EUSAR), Aachen, Germany, June 2010, pp. 14.
    18. 18)
      • 18. Fishler, E., Haimovich, A., Blum, R., et al: ‘MIMO radar: an idea whose time has come’. Proc. IEEE Radar Conf., Philadelphia, PA, USA, April 2004, pp. 7178.
    19. 19)
      • 30. Sun, H., Brigui, F., Lesturgie, M.: ‘Analysis and comparison of MIMO radar waveforms’. Proc. Int. Radar Conf., Lille, France, October 2014, pp. 16.
    20. 20)
      • 22. Li, J., Stoica, P., Xu, L., et al: ‘On parameter identifiability of MIMO radar’, IEEE Signal Process. Lett., 2007, 14, (12), pp. 968971.
    21. 21)
      • 3. Jones, W.D.: ‘Keeping cars from crashing’, IEEE Spectr.., 2001, 38, (9), pp. 4045.
    22. 22)
      • 10. Lee, S., Yoon, Y.-J., Yoon, J., et al: ‘Periodic clutter suppression in iron road structures for automotive radar systems’, IET Radar Sonar Navig., 2018, 12, (10), pp. 11461153.
    23. 23)
      • 23. Ender, J., Klare, J.: ‘System architectures and algorithms for radar imaging by MIMO-SAR’. IEEE Radar Conf., Pasadena, CA, USA, May 2009, pp. 16.
    24. 24)
      • 21. Donnet, B.J., Longstaff, I.D.: ‘MIMO radar techniques and opportunities’. Proc. EuRAD, Manchester, U.K., September 2006, pp. 112115.
    25. 25)
      • 15. Stove, A.G.: ‘Linear FMCW radar techniques’, IEE Proc. F, Radar Signal Process.., 1992, 139, (5), pp. 343350.
    26. 26)
      • 31. Krim, H., Viberg, M.: ‘Two decades of array signal processing research: the parametric approach’, IEEE Signal Process. Mag., 1996, 13, (4), pp. 6794.
    27. 27)
      • 29. Alamouti, S.M.: ‘A simple transmit diversity technique for wireless communications’, IEEE J. Sel. Areas Commun., 1998, 16, (8), pp. 14511458.
    28. 28)
      • 5. Schneider, M.: ‘Automotive radar – status and trends’. Proc. German Microwave Conf., Ulm, Germany, April 2005, pp. 351354.
    29. 29)
      • 8. Lee, S., Kim, S.: ‘Logarithmic-domain array interpolation for improved direction of arrival estimation in automotive radars’, MDPI Sensors (Special Issue: Computational Intelligence in Remote Sensing), 2019, 19, (10), pp. 121.
    30. 30)
      • 20. Haimovich, A.M., Blum, R.S., Cimini, L.J.: ‘MIMO radar with widely separated antennas’, IEEE Signal Process. Mag., 2008, 25, (1), pp. 116129.
    31. 31)
      • 13. Lee, S., Lee, B.-H., Lee, J.-E., et al: ‘Statistical characteristic-based road structure recognition in automotive radar systems’, IEEE Trans. Intell. Transp. Syst., 2019, 20, (7), pp. 24182429.
    32. 32)
      • 2. Skolnik, M.I.: ‘Introduction to radar systems’ (McGraw-Hill, New York, NY, USA, 2001, 3rd edn.).
    33. 33)
      • 4. Rohling, H., Meinecke, M.-M.: ‘Waveform design principles for automotive radar systems’. Proc. CIE Int. Conf. Radar, Beijing, China, October 2001, pp. 14.
    34. 34)
      • 6. Kang, S., Lee, S., Lee, J.-E., et al: ‘Improving the performance of DOA estimation using virtual antenna in automotive radar’, IEICE Trans. Commun., 2017, E100-B, (5), pp. 771778.
    35. 35)
      • 34. Capon, J.: ‘High-resolution frequency-wavenumber spectrum analysis’, Proc. IEEE, 1969, 57, (8), pp. 14081418.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0634
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0634
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading