access icon free Fast-time STAP based on BSS for heterogeneous ionospheric clutter mitigation in HFSWR

High-frequency surface-wave radar (HFSWR) is widely used in vessel and aircraft detection, sea-state sensing and wind-field mapping. Target detection suffers from the ionospheric clutter, which is reflected by the ionosphere. Adaptive beamforming (ABF) has been used for ionospheric clutter mitigation. However, the performance of ABF is limited by the heterogeneous ionospheric clutter and degrees of freedom (DOF) of the antennas array. In order to improve the performance, here, the one-dimensional ABF is expanded to two-dimensional fast-time space–time adaptive processing (STAP), which combines beam and range domains to obtain more DOFs than that in the ABF. In addition, the blind sources separation (BSS) method is also used to improve the spatial covariance matrix estimation accuracy of STAP in the heterogeneous ionospheric clutter background. The simulation and real data results demonstrate the effectiveness of the proposed BSS-STAP method in HFSWR.

Inspec keywords: object detection; array signal processing; space-time adaptive processing; radar clutter; antenna arrays; interference suppression; blind source separation; radar signal processing; covariance matrices

Other keywords: blind sources separation method; adaptive beamforming; ionosphere; wind-field mapping; aircraft detection; heterogeneous ionospheric clutter mitigation; range domains; heterogeneous ionospheric clutter background; fast-time space–time adaptive processing; one-dimensional ABF; target detection suffers; BSS-STAP method; degrees of freedom; antennas array; sea-state sensing; HFSWR; beam; fast-time STAP; high-frequency surface-wave radar

Subjects: Other topics in statistics; Signal processing and detection; Radar equipment, systems and applications; Electromagnetic compatibility and interference; Antenna arrays; Algebra

References

    1. 1)
      • 12. Fabrizio, G.A., Holdsworth, D.A.: ‘Adaptive mitigation of spread clutter in high frequency surface-wave radar’. IEEE Int. Radar Conf., Adelaide, Australia, September 2004, pp. 235240.
    2. 2)
      • 16. Liu, Y., Zhou, C., Tang, Q., et al: ‘Evidence of mid-and low-latitude nighttime ionospheric E–F coupling: coordinated observations of sporadic E layers, F-region field-aligned irregularities, and medium-scale traveling ionospheric disturbances’, IEEE Trans. Geosci. Remote Sens., 2019, 57, (10), pp. 75477557.
    3. 3)
      • 6. Zhang, X., Yang, Q., Yao, D., et al: ‘Main-lobe cancellation of the space spread clutter for target detection in HFSWR’, IEEE. J. Sel. Top. Signal. Process., 2015, 9, (8), pp. 16321638.
    4. 4)
      • 22. Priyadarshi, S.: ‘A review of ionospheric scintillation models’, Surv. Geophys., 2015, 36, (2), pp. 295324.
    5. 5)
      • 9. Su, Y., Wei, Y., Xu, R.: ‘Ionospheric clutter suppression using wavelet oblique projecting filter’. 2017 IEEE Radar Conf. (RadarConf), Seattle, WA, USA, 2017, pp. 15521556.
    6. 6)
      • 10. Lye, Z., Yu, C., Liu, A: ‘Prediction method for ionospheric clutter suppression for HFSWR’, Electron. Lett., 2019, 55, (15), pp. 857859.
    7. 7)
      • 23. Abramovich, Y.I., Gorokhov, A.Y., Demeure, C., et al: ‘Experimental verification of a generalized multivariate propagation model for ionospheric HF signals’. 1996 8th European Signal Processing Conf., Trieste, Italy, September 1996, pp. 14.
    8. 8)
      • 24. Herman, J.R.: ‘Spread F and ionospheric F-region irregularities’, Rev. Geophys., 1966, 4, (2), pp. 255299.
    9. 9)
      • 14. Guo, Y., Wei, Y., Xu, R., et al: ‘New BSS-based ABF for heterogeneous ionospheric clutter mitigation in HFSWR’, IET Radar Sonar Navig., 2019, 13, (11), pp. 20152023.
    10. 10)
      • 18. Abramovich, Y., Anderson, S., Spencer, N., et al: ‘Stochastic-constraints method in nonstationary hot-clutter cancellation. II. Unsupervised training applications’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (1), pp. 132150.
    11. 11)
      • 2. Walsh, J., Huang, W., Gill, E.W.: ‘An analytical model for HF radar ionospheric clutter’. 2013 IEEE Antennas and Propagation Society Int. Symp. (APSURSI), Orlando, FL, USA, 2013, pp. 19741975.
    12. 12)
      • 4. Fabrizio, G.A., Gershman, A.B., Turley, M.D.: ‘Robust adaptive beamforming for HF surface wave over-the-horizon radar’, IEEE Trans. Aerosp. Electron. Syst., 2004, 40, (2), pp. 510525.
    13. 13)
      • 1. Fabrizio, G.A.: ‘High frequency over-the-horizon radar: fundamental principles, signal processing, and practical applications’ (McGraw-Hill Education, USA, 2013, 1st edn.), pp. 388398.
    14. 14)
      • 19. Chen, S., Huang, W., Gill, E.Z.: ‘A vertical reflection ionospheric clutter model for HF radar used in coastal remote sensing’, IEEE Antennas Wirel. Propag. Lett., 2015, 9, pp. 16891693.
    15. 15)
      • 3. Li, Z., Tian, Y., Wu, S., et al: ‘Design of a dual-frequency center-fed transmitting antenna for compact HF surface wave radar’, IEEE Antennas Wirel. Propag. Lett., 2018, 17, (10), pp. 18901894.
    16. 16)
      • 21. Ravan, M., Riddolls, R.J., Adve, R.S.: ‘Ionospheric and auroral clutter models for HF surface wave and over-the-horizon radar systems’, Radio Sci., 2012, 47, (3), pp. 112.
    17. 17)
      • 25. Zhou, J., Wei, Y., Xu, R.: ‘A clutter sample selection-based generalized sidelobe canceller algorithm for ionosphere clutter suppression in HFSWR’. 2018 Int. Conf. on Radar (RADAR), Brisbane, QLD, Australia, 2018, pp. 14.
    18. 18)
      • 20. Chen, S., Huang, W., Gill, E.Z.: ‘A vertical reflection ionospheric clutter model for high frequency surface wave radar’. 2015 IEEE Int. Symp. on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, Canada, July 2015, pp. 9991000.
    19. 19)
      • 7. Mao, X., Liu, Y.: ‘Null phase-shift polarization filtering for high-frequency radar’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (4), pp. 13971408.
    20. 20)
      • 5. Abramovich, Y., Anderson, S., Lyudviga, Y., et al: ‘Space-time adaptive techniques for ionospheric clutter mitigation in HF surface wave radar systems’. IEEE Int. Conf. on Radar Systems, Toulouse, France, January 2004, pp. 17.
    21. 21)
      • 11. Liu, J., Xie, W., Gui, G., et al: ‘Adaptive beamforming algorithms with robustness against steering vector mismatch of signals’, IET Radar Sonar Navig., 2017, 11, (12), pp. 18311838.
    22. 22)
      • 13. Han, S., Maio, D.A., Carotenuto, V., et al: ‘A novel radar training data selection method based on the minimal covariance determinant criterion’. Int. Conf. on Radar Systems, Belfast, UK, October 2017, pp. 2326.
    23. 23)
      • 15. Pierre, C., Christian, J.: ‘Handbook of blind source separation’ (Elsevier Ltd., UK, 2010, 1st edn.).
    24. 24)
      • 17. Melvin, W.L.: ‘Space-time adaptive radar performance in heterogeneous clutter’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (2), pp. 621633.
    25. 25)
      • 26. Fabrizio, G.A., Farina, A.: ‘Blind source separation with the generalized estimation of multipath signals algorithm’, IET Radar Sonar Navig., 2014, 8, (9), pp. 12551266.
    26. 26)
      • 8. Li, Q., Zhang, W., Li, M., et al: ‘Automatic detection of ship targets based on wavelet transform for HF surface wavelet radar’, IEEE Geosci. Remote Sens. Lett., 2017, 14, (5), pp. 714718.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0616
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0616
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading