access icon free Ionospheric phase decontamination based on sparse decomposition for multiple-input multiple-output over-the-horizon radar

Ionospheric phase contamination deteriorates the coherence of high-frequency echoes, reducing the detection performance of multiple-input multiple-output over-the-horizon radar (MIMO-OTHR) on slow ships. A high-precision phase decontamination method approximately extracts a single-frequency reference signal from the echo in advance, called the calibration signal, which is completed in the Doppler domain. When severe ionospheric phase contamination causes the echo Bragg peaks to overlap, this operation is difficult to achieve. To solve this problem, the authors transform calibration signal extraction into a sparse decomposition of a short-time sequence vector set and solve it by an iterative method. This process is based on the sparsity of the short-time sequence in the Doppler domain, as well as the reversibility between the original data vector, accumulated after a long coherence time, and its corresponding short-time sequence vector set, obtained by sliding window segmentation of the original data vector. Then the ionospheric phase contamination is extracted from the calibration signal to compensate for the original echo. Compared with existing methods, the proposed method can adaptively extract a calibration signal to achieve high-precision phase compensation of a MIMO-OTHR echo while adding a more robust performance against noise when considering overlapping Bragg peaks formed by serious ionospheric phase contamination.

Inspec keywords: echo; radar clutter; iterative methods; MIMO communication; radar signal processing; ionospheric electromagnetic wave propagation; decontamination; calibration

Other keywords: short-time sequence vector; high-precision phase compensation; ionospheric phase decontamination; single-frequency reference signal; original data vector; echo Bragg peaks; Doppler domain; high-precision phase decontamination method; over-the-horizon radar; severe ionospheric phase contamination; MIMO-OTHR echo; original echo; high-frequency echoes; iterative method; long coherence time; sparse decomposition; detection performance; calibration signal extraction; serious ionospheric phase contamination; overlapping Bragg peaks

Subjects: Ionospheric electromagnetic wave propagation; Integral transforms; Radar equipment, systems and applications; Other topics in statistics; Signal processing and detection

References

    1. 1)
      • 10. Anderson, S.J., Abramovich, Y.I.: ‘A unified approach to detection, classification, and correction of ionospheric distortion in HF sky wave radar systems’, Radio Sci., 1998, 33, (4), pp. 10551067.
    2. 2)
      • 24. Gholami, A.: ‘Sparse time-frequency decomposition and some applications’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (6), pp. 35983604.
    3. 3)
      • 5. Frazer, G.J.: ‘Experimental results for MIMO methods applied in over-the-horizon radar’, IEEE Aerosp. Electron. Syst. Mag., 2017, 32, (12), pp. 5269.
    4. 4)
      • 1. Frazer, G.J., Abramovich, Y.I., Johnson, B.A.: ‘Multiple-input multiple-output over-the-horizon radar: experimental results’, IET Radar Sonar Navig., 2009, 3, (4), pp. 290303.
    5. 5)
      • 21. Barrick, D.E.: ‘First-order theory and analysis of MF/ HF /VHF scatter from the sea’, IEEE Trans. Antennas Propag., 1972, 20, (1), pp. 210.
    6. 6)
      • 13. Lu, K., Wang, J., Liu, X.Z.: ‘A piecewise parametric method based on polynomial phase model to compensate ionospheric phase contamination’, IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Hong Kong, China, April 2003, pp. 405408.
    7. 7)
      • 9. Howland, P.E., Cooper, D.C.: ‘Use of the wigner-ville distribution to compensate for ionospheric layer movement in high-frequency sky-wave radar systems’, IEE Proc.-F, 1993, 140, (1), pp. 2936.
    8. 8)
      • 14. You, W., He, Z.S., Wang, S.L.: ‘Ionospheric decontamination for skywave OTH radar based on complex energy detector’, Eurasip J. Adv. Signal Proc., 2012, 2012, (1), pp. 18.
    9. 9)
      • 22. Khan, R.H.: ‘Ocean-clutter model for high-frequency radar’, IEEE J. Ocean. Eng., 1991, 16, (2), pp. 181188.
    10. 10)
      • 3. Yu, W.Q., Chen, J.W., Bao, Z.: ‘Multi-mode propagation mode localisation and spread-Doppler clutter suppression method for multiple-input multiple-output over-the-horizon radar’, IET Radar Sonar Navig., 2019, 13, (8), pp. 12141224.
    11. 11)
      • 6. Fabrizio, G.A.: ‘High frequency over-the-horizon radar: fundamental principles, signal processing, and practical applications’ (McGraw-Hill Education, USA, 2013).
    12. 12)
      • 19. Dou, D.X., Li, M., He, Z.S.: ‘Multi-mode clutter suppression algorithm of MIMO-OTH radar based on sparse reconstruction’, Acta Aeronaut. Astronaut. Sin., 2015, 36, (7), pp. 23102318.
    13. 13)
      • 7. Gauthier, F., Bourdillon, A., Parent, J.: ‘On the estimation of quasi-instantaneous frequency modulation of HF signals propagated through the ionosphere’, IEEE Trans. Antennas Propag., 1990, 38, (3), pp. 405411.
    14. 14)
      • 20. Crombie, D.D.: ‘Doppler spectrum of sea echo at 13.56 Mc./s.’, Nature, 1955, 1955, (175), pp. 681682.
    15. 15)
      • 4. Dou, D.X., Li, M., He, Z.S.: ‘Multi-mode clutter suppression of multiple-input–multiple-output over-the-horizon radar based on blind source separation’, IET Radar Sonar Navig., 2015, 9, (8), pp. 956966.
    16. 16)
      • 11. Parent, J., Bourdillon, A.: ‘A method to correct HF skywave backscattered signals for ionospheric frequency modulation’, IEEE Trans. Antennas Propag., 1988, 36, (1), pp. 127135.
    17. 17)
      • 18. Hou, C.Y., Xia, T., Bao, Q.: ‘Time-frequency method to reduce contamination by ionospheric fast frequency modulation for HF skywave radars’, IET Radar Sonar Navig., 2014, 8, (7), pp. 742748.
    18. 18)
      • 17. Li, Y.J., Wei, Y.S., Guo, R.J., et al: ‘A cascaded approach for correcting ionospheric contamination with large amplitude in HF skywave radars’, Scientific World J., 2014, 2014, (2), pp. 19.
    19. 19)
      • 26. Poon, M.W.Y., Khan, R.H., Le-Ngoc, S.: ‘A singular value decomposition (SVD) based method for suppressing ocean clutter in high frequency radar’, IEEE Trans. Signal Process., 1993, 41, (3), pp. 14211425.
    20. 20)
      • 16. Yu, W.Q., Chen, J.W., Li, X.: ‘Comprehensive performance evaluation of ionosphere phase contamination time-frequency correction approaches in over-the-horizon radar’, J. Elect. Inf. Technol., 2018, 40, (4), pp. 9921001.
    21. 21)
      • 15. Hu, J.F., Ai, H., Xue, C.P., et al: ‘Ionospheric decontamination based on sparse reconstruction for skywave radar’, Eurasip J. Adv. Signal Proc., 2016, 2016, (1), pp. 110.
    22. 22)
      • 23. Root, B.T.: ‘HF-over-the-horizon radar ship detection with short dwells using clutter cancelation’, Radio Sci., 1998, 33, (4), pp. 10951111.
    23. 23)
      • 8. Bourdillon, A., Gauthier, F., Parent, J.: ‘Use of maximum entropy spectral analysis to improve ship detection by over-the-horizon radar’, Radio Sci., 1987, 22, (2), pp. 313320.
    24. 24)
      • 2. Abramovich, Y.I., Frazer, G.J., Johnson, B.A.: ‘Principles of mode-selective MIMO OTHR’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (3), pp. 18391868.
    25. 25)
      • 12. Lu, K., Liu, X.Z., Liu, Y.T.: ‘Ionospheric decontamination and sea clutter suppression for HF skywave radars’, IEEE J. Ocean. Eng., 2005, 30, (2), pp. 455462.
    26. 26)
      • 25. Goldstein, T., Osher, S.: ‘The split Bregman method for L1-regularized problems’, SIAM J. Imaging Sci., 2009, 2, (2), pp. 323343.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0583
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0583
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading