Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Novel sparse apertures ISAR imaging algorithm via the TLS-ESPRIT technique

The prevalent imaging method in inverse synthetic aperture radar (ISAR) system is range-Doppler (RD) method, which is implemented by the fast Fourier transformation (FFT). FFT is computationally efficient, but it comes with a price – the problems of wide main-lobes and high side-lobes, especially under the sparse apertures condition. In addition, the resolution of RD method is determined by the radar parameters, which poses limitation to super-resolution imaging, multi-tasking and cognitive reconfigurable applications. In this study, the authors propose a novel super-resolution ISAR imaging method based on the total least squares-estimation of signal parameters via rotational invariance technique (TLS-ESPRIT). The locations and intensities of the scatterers are obtained by employing the ESPRIT algorithm and the least squares technique. Then the ISAR image is formulated, having circumvented all of the above-mentioned limitations. Experiments based on simulated and real measured data validate the effectiveness of the proposed method.

References

    1. 1)
      • 21. Chen, J., Jin, T., Mohamed, M., et al: ‘An adaptive TLS-ESPRIT algorithm based on an S-G filter for analysis of low frequency oscillation in wide area measurement systems’, IEEE Access, 2019, 7, pp. 4764447654.
    2. 2)
      • 1. Zheng, J., Liu, H., Liao, G., et al: ‘ISAR imaging of targets with complex motions based on a noise resistant parameter estimation algorithm without nonuniform axis’, IEEE Sens. J., 2016, 16, (8), pp. 25092518.
    3. 3)
      • 17. Yan, F., Jin, M., Liu, S., et al: ‘Real-valued MUSIC for efficient direction estimation with arbitrary array geometries’, IEEE Trans. Signal Process., 2014, 62, (6), pp. 15481560.
    4. 4)
      • 16. Schmidt, R.: ‘Multiple emitter location and signal parameter estimation’, IEEE Trans. Antennas Propag., 1986, 34, (3), pp. 276280.
    5. 5)
      • 11. Ye, W., Yeo, T., Bao, Z.: ‘Weighted least-squares estimation of phase errors for SAR/ISAR autofocus’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (5), pp. 24872494.
    6. 6)
      • 25. Shan, T., Wax, M., Kailath, T.: ‘On spatial smoothing for direction of arrival estimation of coherent signals’, IEEE Trans. Acoust. Speech Signal Process., 1985, 33, (4), pp. 806811.
    7. 7)
      • 27. Wu, H., Yang, J., Chen, F.: ‘Source number estimators using transformed gerschgorin radii’, IEEE Trans. Signal Process., 1995, 43, (6), pp. 13251333.
    8. 8)
      • 26. Thompson, J., Grant, P., Mulgrew, B.: ‘Performance of spatial smoothing algorithms for correlated sources’, IEEE Trans. Signal Process., 1996, 44, (4), pp. 10401046.
    9. 9)
      • 14. Li, J., Stoica, P.: ‘Efficient mixed-spectrum estimation with applications to target feature extraction’, IEEE Trans. Signal Process., 1996, 44, (2), pp. 281295.
    10. 10)
      • 22. Wang, X., Zhang, M., Zhao, J.: ‘Efficient cross-range scaling method via two-dimensional unitary ESPRIT scattering center extraction algorithm’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (5), pp. 928932.
    11. 11)
      • 5. Qian, Y., Zhu, D.: ‘Image formation of azimuth periodically gapped SAR raw data with complex deconvolution’, Remote Sens., 2019, 11, (22), p. 2698.
    12. 12)
      • 15. Gough, P.: ‘A fast spectral estimation algorithm based on the FFT’, IEEE Trans. Signal Process., 1994, 42, (6), pp. 13171322.
    13. 13)
      • 18. Suryaprakash, R., Nadakuditi, R.: ‘Consistency and MSE performance of MUSIC-based DOA of a single source in white noise with randomly missing data’, IEEE Trans. Signal Process., 2015, 63, (18), pp. 47564770.
    14. 14)
      • 28. Wang, J., Li, P.: ‘Recovery of sparse signals using multiple orthogonal least squares’, IEEE Trans. Signal Process., 2017, 65, (8), pp. 20492062.
    15. 15)
      • 6. Zhang, L., Duan, J., Qiao, J., et al: ‘Phase adjustment and ISAR imaging of maneuvering targets with sparse apertures’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (3), pp. 19551973.
    16. 16)
      • 10. Wang, J., Liu, X., Zhou, Z.: ‘Minimum-entropy phase adjustment for ISAR’, IEE Proc. Radar Sonar Navig., 2004, 151, (4), pp. 203209.
    17. 17)
      • 2. Zheng, J., Liu, H., Liu, Q.: ‘Parameterized centroid frequency chirp rate distribution for LFM signal analysis and mechanisms of constant delay introduction’, IEEE Trans. Signal Process., 2017, 65, (24), pp. 64356447.
    18. 18)
      • 20. Burrows, M.: ‘Two-dimensional ESPRIT with tracking for radar imaging and feature extraction’, IEEE Trans. Antennas Propag., 2004, 52, (2), pp. 524532.
    19. 19)
      • 3. Li, N., Niu, S., Guo, Z., et al: ‘Raw data-based motion compensation for high-resolution sliding spotlight synthetic aperture radar’, Sensors, 2018, 18, (3), pp. 114, p. 842.
    20. 20)
      • 7. Li, G., Zhang, H., Wang, X., et al: ‘ISAR 2-D imaging of uniformly rotating targets via matching pursuit’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (2), pp. 18381846.
    21. 21)
      • 19. Roy, R., Kailath, T.: ‘ESPRIT-estimation of signal parameters via rotational invariance techniques’, IEEE Trans. Acoust. Speech Signal Process., 1989, 37, (3), pp. 984995.
    22. 22)
      • 8. Zeng, C., Zhu, W., Jia, X.: ‘Sparse aperture ISAR imaging algorithm based on adaptive filtering framework’, IET Radar Sonar Navig., 2018, 13, (3), pp. 445455.
    23. 23)
      • 4. Qian, Y., Zhu, D.: ‘High resolution spotlight spaceborne SAR focusing via modified-SVDs and deramping-based approach’, IET Radar Sonar Navig., 2019, 13, (10), pp. 18261835.
    24. 24)
      • 13. Li, J., Zheng, D., Stoica, P.: ‘Angle and waveform estimation via RELAX’, IEEE Trans. Aerosp. Electron. Syst., 1997, 33, (3), pp. 10771087.
    25. 25)
      • 9. Zhu, D., Wang, L., Yu, Y., et al: ‘Robust ISAR range alignment via minimizing the entropy of the average range profile’, IEEE Geosci. Remote Sens. Lett., 2009, 6, (2), pp. 204208.
    26. 26)
      • 23. Zhao, J., Zhang, M., Wang, X., et al: ‘Three-dimensional super resolution ISAR imaging based on 2D unitary ESPRIT scattering centre extraction technique’, IET Radar Sonar Navig., 2016, 11, (1), pp. 98106.
    27. 27)
      • 12. Li, D., Zhan, M., Zhang, X., et al: ‘ISAR imaging of nonuniformly rotating target based on the multicomponent CPS model under low SNR environment’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (3), pp. 11191135.
    28. 28)
      • 24. Shan, T., Kailath, T.: ‘Adaptive beamforming for coherent signals and interference’, IEEE Trans. Acoust. Speech Signal Process., 1985, 33, (3), pp. 527536.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0564
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0564
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address