Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Proposal of spread spectrum MSK for BDS RDSS signal modulation

BPSK is the basis of current GNSS (Global Navigation Satellite System) signals. BDS (Beidou navigation satellite system) RDSS (Radio Determination Satellite Service) system also adopts BPSK to realize communication and ranging simultaneously. To realize higher system capacity, RDSS signals overlap in time and frequency domain. The signal performance is heavily determined by the MAI (Multiple Access Interference) between overlapping signals. In this paper, SSMSK (spread spectrum MSK) is proposed. The signal performance is investigated under four conditions considering the main lobe bandwidth and the receiver bandwidth. The maximum number of overlapping signals for SSMSK is 11.7% higher than BPSK when the receiver bandwidth is for the side subcarrier. And the value is 10.6% when the receiver bandwidth is. SSMSK can be received utilizing BPSK local signal. When the receiving bandwidth is , the correlation peak of SSMSK_BPSK is identical to BPSK. The tracking accuracy of SSMSK is higher than BPSK when the correlation interval is between 0.2-1 chips. The accuracy of SSMSK_BPSK is higher than BPSK when the correlation interval is 0.5 chips. The disadvantage of SSMSK is larger quantization word length. SSMSK is a better modulation for RDSS based on the comprehensive performance.

References

    1. 1)
      • 1. Tan, S.: ‘Theory and application of comprehensive RDSS position and report’, Acta Geod. et Cartogr. Sin., 2009, 38, (1), pp. 15.
    2. 2)
      • 20. Gronemeyer, S.A., Mcbride, A.L.: ‘MSK and offset QPSK modulation’, IEEE Trans. Commun., 1976, 24, (8), pp. 809820.
    3. 3)
      • 8. Rodríguez, J.Á.Á.: ‘On generalized signal waveforms for satellite navigation’. PhD thesis, University FAF Munich, Germany, 2008.
    4. 4)
      • 22. Huang, Y.: ‘Baseband algorithms and implementation Tech. for high-performance navigation receiver’. PhD thesis, National University of Defense Technology, 2011(in Chinese).
    5. 5)
      • 14. Liu, X., Liang, M., Yu, M., et al: ‘Performance evaluation of SSMSK and OFDM modulations for future GNSS signals’, GPS Solut., 2014, 18, (2), pp. 163175.
    6. 6)
      • 13. Xue, R., Sun, Y., Zhao, D.: ‘CPM signals for satellite navigation in the S and C bands’, Sensors, 2015, 15, (6), pp. 1318413200.
    7. 7)
      • 11. Wang, L., Tang, X., Li, J., et al: ‘Acceleration method for software signal simulators of BDS navigation signals and RDSS signals based on GPGPU’, IEEE Access, 2019, 7, pp. 102843102851.
    8. 8)
      • 12. Wang, L., Tang, X., Li, B., et al: ‘High-quality BDS navigation signal simulator based on GPU optimized design’. China Satellite Navigation Conf., Harbin, China, May 2018, pp. 5766.
    9. 9)
      • 21. Zeng, X., Ni, S., Zhang, Y., et al: ‘Design of optimal quantizer in DSSS receiver’, J. Signal Process., 2013, 29, (1), pp. 115120, (in Chinese).
    10. 10)
      • 6. Xue, R., Xu, X., Xing, D., et al: ‘Application of spread spectrum CPM to satellite navigation system’, J. Projectiles, Rockets, Missiles Guidance, 2014, 34, (6), pp. 139144.
    11. 11)
      • 4. Luo, R., Xu, Y., Yuan, H.: ‘Performance evaluation of the new compound-carrier-modulated signal for future navigation signals’, Sensors, 2016, 16, (2), pp. 142158.
    12. 12)
      • 19. Caffery, J., Stüber, G.L.: ‘Effects of multiple-access interference on the noncoherent delay lock loop’, IEEE Trans. Commun., 2000, 48, (12), pp. 21092119.
    13. 13)
      • 17. Han, K., Won, J.: ‘Investigation on the relationship between GNSS signal design parameters and its navigation performance for the next generation GNSS signal design’, ION GNSS, Miami, Florida, September 2018, pp. 868875.
    14. 14)
      • 10. Sun, Y., Xue, R., Zhao, D., et al: ‘Radio frequency compatibility evaluation of S band navigation signals for future BeiDou’, Sensors, 2017, 17, (5), pp. 10391058.
    15. 15)
      • 5. Emmanuele, A., Zanier, F., Boccolini, G., et al: ‘Spread-spectrum continuous-phase-modulated signals for satellite navigation’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (4), pp. 32343249.
    16. 16)
      • 15. Su, C., Guo, S., Zhou, H.: ‘New signal waveforms design for GNSS’, J. Beijing Univ. Aeronaut. Astronaut., 2012, 38, (12), pp. 16761681.
    17. 17)
      • 9. Ipatov, V.P., Shebshaevich, B.V.: ‘Spectrum-compact signals: a suitable option for future GNSS’, Inside GNSS, 2011, pp. 4753.
    18. 18)
      • 16. Betz, J.W., Kolodziejski, K.R.: ‘Generalized theory of code tracking with an early-late discriminator part I: lower bound and coherent processing’, IEEE Trans. Aerosp. Electron. Syst., 2009, 45, (4), pp. 15381550.
    19. 19)
      • 2. Li, J.: ‘Research on multiple-access interference effects and mitigation techniques in satellite navigation systems’. PhD thesis, National University of Defense Technology, China, 2016, (in Chinese).
    20. 20)
      • 3. Li, J., Li, Y., Mou, W., et al: ‘Analysis of spectral separation impact on RDSS system inbound capacity with bandwidth limit’, J. Natl. Univ. Def. Technol., 2012, 34, (2), pp. 5558(in Chinese).
    21. 21)
      • 7. Mateu, I., Paonni, M., Issler, J.L., et al: ‘A search for spectrum: GNSS signals in S-band part 1’. Inside GNSS2010, 5, pp. 6571.
    22. 22)
      • 18. Proakis, J.G., Salehi, M.: ‘Digital communications’ (McGraw-Hill Companies, China, 5th edn., 2008).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0533
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0533
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address