access icon free Guidance control to capture a target using communication between the autonomous aerial vehicle and remote sensors

In this study, the authors introduce a three-dimensional (3D) discrete-time motion camouflage (MC) control to make an autonomous aerial vehicle (AAV) chase a manoeuvring target while not rotating the bearing line between the AAV and the target. This study handles a scenario in which the AAV can measure the target's position using remote sensors (e.g. ground-based laser systems) only. Since there exists communication delay between the remote sensors and the AAV, time delay exists between the time instant when the target's position is measured and the time instant when the AAV applies controllers based on sensor measurements. Considering a scenario where the time delay is accessible, the authors develop a 3D MC control based on the time delay explicitly. They prove that as long as several assumptions are satisfied, the angular rate of bearing line is exactly zero at all sampling indexes while the distance between the target and the AAV monotonically decreases as time elapses. The effectiveness of the 3D discrete-time MC control is verified utilising extensive MATLAB simulations.

Inspec keywords: multi-robot systems; remotely operated vehicles; autonomous aerial vehicles; delays; position control; mobile robots; motion control; discrete time systems; target tracking

Other keywords: communication delay; ground-based laser systems; three-dimensional discrete-time motion camouflage control; autonomous aerial vehicle; 3D discrete-time MC control; AAV; sensor measurements; time delay; manoeuvring target; time instant; remote sensors; bearing line; guidance control

Subjects: Distributed parameter control systems; Aerospace control; Spatial variables control; Discrete control systems; Telerobotics; Mobile robots

References

    1. 1)
      • 26. Ristic, B., Arulampalam, S., Gordon, N.: ‘Beyond the Kalman filter: particle filters for tracking applications’ (Artech house radar library, Artech House, Norwood, MA, USA, 2004).
    2. 2)
      • 10. Shneydor, N.A.: ‘Missile guidance and pursuit- kinematics, dynamics and control’ (Woodhead Publishing, Sawston, UK, 1998).
    3. 3)
      • 23. Yan, H., He, Y.: ‘Adaptive integrated guidance and control based on backstepping for the landing of reusable launch vehicles’, IFAC-PapersOnLine, 2015, 48, (28), pp. 496501.
    4. 4)
      • 16. Raju, V., Krishnaprasad, P.S.: ‘Motion camouflage in the presence of sensory noise and delay’. 2016 IEEE 55th Conf. on Decision and Control (CDC), Las Vegas, NV, USA, December 2016, pp. 28462852.
    5. 5)
      • 3. Anderson, A.J., McOwan, P.W.: ‘Model of a predatory stealth behaviour camouflaging motion’, Proc. R. Soc. B Biol. Sci., 2003, 270, pp. 489495.
    6. 6)
      • 8. Galloway, K.S., Justh, E.W., Krishnaprasad, P.S.: ‘Motion camouflage in a stochastic setting’. IEEE Int. Conf. on Decision and Control (CDC), USA, 2007, pp. 16521659.
    7. 7)
      • 20. Wang, H., Lei, H., Ye, J., et al: ‘A novel capture region of retro proportional navigation guidance law for intercepting high-speed nonmaneuvering targets’. Proc. Inst. Mech. Eng. G J. Aerosp. Eng., 2018, 232, (6), pp. 11861198. Available at: https://doi.org/10.1177/0954410017714006.
    8. 8)
      • 14. Urakubo, T., Kanade, T.: ‘Capturability analysis of a three dimensional guidance law with angular acceleration input’. American Control Conf. (ACC), Canada, 2012, pp. 25512556.
    9. 9)
      • 6. Reddy, P.V., Justh, E.W., Krishnaprasad, P.S.: ‘Motion camouflage in three dimensions’. IEEE Conf. Proc. of Decision and Control, USA, 2006, pp. 33273332.
    10. 10)
      • 15. Halder, U., Dey, B.: ‘Biomimetic algorithms for coordinated motion: theory and implementation’. Proc. of Int. Conf. on Robotics and Automation (ICRA), USA, 2015, pp. 54265432.
    11. 11)
      • 27. Geyer, T.: ‘Model predictive control of high power converters and industrial drives’ (Wiley, UK, 2016).
    12. 12)
      • 2. Rano, I.: ‘Direct collocation for two dimensional motion camouflage with nonholonomic, velocity and acceleration constraints’. IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), Shenzhen, China, 2013, pp. 109114.
    13. 13)
      • 24. Boccadoro, M., Angelis, G.D., Valigi, P.: ‘TDOA positioning in NLOS scenarios by particle filtering’, Wirel. Netw., 2012, 18, (5), pp. 579589.
    14. 14)
      • 18. Prasanna, H.M., Ghose, D.: ‘Retro-proportional-navigation: a new guidance law for interception of high-speed targets’, J. Guid. Control Dyn., 2012, 35, (2), pp. 377386.
    15. 15)
      • 12. Song, S., Ha, I.: ‘A lyapunov-like approach to performance analysis of 3-dimensional pure PNG laws’, IEEE Trans. Aerosp. Electron. Syst., 1994, 30, (1), pp. 238248.
    16. 16)
      • 11. Oh, J., Ha, I.: ‘Capturability of the 3-dimensional pure PNG law’, IEEE Trans. Aerosp. Electron. Syst., 1999, 35, (2), pp. 491503.
    17. 17)
      • 19. Ghosh, S., Ghose, D., Raha, S.: ‘Capturability analysis of a 3D retro-PN guidance law for higher speed nonmaneuvering targets’, IEEE Trans. Control Syst. Technol., 2014, 22, (5), pp. 18641874.
    18. 18)
      • 13. Kim, J.: ‘Target following and close monitoring using an unmanned surface vehicle’, IEEE Trans. Syst., Man, Cybern. Syst., 2018, pp. 110, doi: 10.1109/TSMC.2018.2846602.
    19. 19)
      • 28. Carmo, M.D.: ‘Differential geometry of curves and surfaces’ (Prentice Hall, Upper Saddle River, NJ, USA, 1976).
    20. 20)
      • 21. Guo, J., Xiong, Y., Zhou, J.: ‘A new sliding mode control design for integrated missile guidance and control system’, Aerosp. Sci. Technol., 2018, 78, pp. 5461.
    21. 21)
      • 17. Kim, J.: ‘Path plan strategy of an underwater robot to approach a moving emitter while maximising sound intensity measurements’, IET Radar Sonar Navig., 2019, 13, (5), pp. 795801.
    22. 22)
      • 25. Bar-Shalom, Y., Fortmann, T.E.: ‘Tracking and data association’ (Academic Press, Orlando, FL, 1988).
    23. 23)
      • 4. Srinivasan, M.V., Davey, M.: ‘Strategies for active camouflage of motion’, Proc. R. Soc. B Biol. Sci., 1995, 259, pp. 1925.
    24. 24)
      • 5. Mizutani, A., Chahl, J., Srinivasan, M.: ‘Insect behaviour: motion camouflage in dragonflies’, Nature, 2003, 423, p. 604.
    25. 25)
      • 22. Tian, B., Fan, W., Zong, Q.: ‘Integrated guidance and control for reusable launch vehicle in reentry phase’, Nonlinear Dyn., 2015, 80, pp. 397412.
    26. 26)
      • 1. Xu, Y., Basset, G.: ‘Sequential virtual motion camouflage method for nonlinear constrained optimal trajectory control’, Automatica, 2012, 48, pp. 12731285.
    27. 27)
      • 9. Ghose, K., Horiuchi, T.K., Krishnaparasad, P.S., et al: ‘Ecolocating bats use a nearly time-optimal strategy to intercept prey’, PLoS Biol., 2006, 4, (e108), pp. 865873.
    28. 28)
      • 7. Justh, E., Krishnaprasad, P.: ‘Steering laws for motion camouflage’, Proc. R. Soc. A, 2006, 462, pp. 36293643.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0180
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0180
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading