access icon free Task scheduling algorithm based on value optimisation for anti-missile phased array radar

A task scheduling algorithm based on value optimisation is proposed under comprehensive priority for anti-missile phased array radar. The model of threat degree is established for ballistic missile targets. The task comprehensive priority is obtained utilising a two-dimensional priority table which synthesises the target threat degree and the task deadline. Then, based on the comprehensive priority, each task gets a dynamic value function, instead of a fixed value as usual. In this way, the task value is enlarged when it is executed close to the desired execution time. A value optimisation model for task scheduling is constructed, and the genetic algorithm is utilised to solve this scheduling model. Thereby tasks can be executed as close as possible to the desired time, and the principle of scheduling timeliness can be better achieved. The performance of the proposed algorithm (PA) is compared with traditional scheduling algorithms by simulation experiments, as well as the impact that parameters of task value function have on scheduling performance is analysed. Simulation results show that compared to the traditional algorithms, the PA reduces the average time shift ratio and improves the value achieving ratio.

Inspec keywords: missiles; genetic algorithms; optimisation; scheduling; phased array radar

Other keywords: scheduling performance; anti-missile; value achieving ratio; scheduling model; fixed value; genetic algorithm; task comprehensive priority; traditional scheduling algorithms; traditional algorithms; task value function; task scheduling algorithm; task deadline; target threat degree; value optimisation model; two-dimensional priority table; scheduling timeliness; desired execution time; dynamic value function; array radar; ballistic missile targets

Subjects: Optimisation techniques; Optimisation techniques; Combinatorial mathematics; Combinatorial mathematics; Radar equipment, systems and applications

References

    1. 1)
      • 3. Miranda, S.L.C., Baker, C.J., Woodbridge, K., et al: ‘Comparison of scheduling algorithms for multifunction radar’, IET Radar Sonar Navig., 2007, 1, (6), pp. 414424.
    2. 2)
      • 20. Zhang, H.W., Xie, J.W., Zhang, Z.J., et al: ‘Online task interleaving for digital array radar’, Int. J. Electron. Commun., 2017, 79, pp. 250256.
    3. 3)
      • 27. Mir, H., Guitouni, A.: ‘Variable dwell time task scheduling for multifunction radar’, IEEE Trans. Autom. Sci. Eng., 2014, 11, (2), pp. 463472.
    4. 4)
      • 11. Zhang, H.W., Xie, J.W., Sheng, C.: ‘Adaptive scheduling algorithm over comprehensive priority for phased array radar’, Acta Armamentarii, 2016, 37, (11), pp. 21632169.
    5. 5)
      • 2. Jimenez, M.I., Val, L.D., Villacorta, J.J., et al: ‘Design of task scheduling process for a multifunction radar’, IET Radar Sonar Navig., 2012, 6, (5), pp. 341347.
    6. 6)
      • 17. Sgambato, P., Celentano, S., Dio, C.D., et al: ‘A flexible online scheduling algorithm for multifunction radar’. Proc. of IEEE Radar Conf., Philadelphia, USA, 2016, pp. 535539.
    7. 7)
      • 23. Byrne, M., White, K., Williams, J.: ‘Scheduling multifunction radar for search and tracking’. Proc. of 18th Int. Conf. on Information Fusion., Washington, USA, 2015, pp. 945952.
    8. 8)
      • 28. Roubila, L.K., Fayez, F.: ‘An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: the single mode case’, Eur. J. Oper. Res., 2018, 265, (2), pp. 454462.
    9. 9)
      • 18. Mir, H.S., Wilkinson, J.D.: ‘Task scheduling algorithm for an air and missile defense radar’. Proc. of IEEE Radar Conf., Rome, Italy, 2008.
    10. 10)
      • 12. Zhang, H.W., Xie, J.W., Zong, B.F., et al: ‘Dynamic priority scheduling method for the air-defence phased array radar’, IET Radar Sonar Navig., 2017, 11, (11), pp. 11401146.
    11. 11)
      • 7. Lu, J.B., Hu, W.D., Xi, Z.M., et al: ‘Multifunction phased array radar resource management: real-time scheduling algorithm’, J. Comput. Inf. Syst., 2011, 7, (2), pp. 385393.
    12. 12)
      • 5. Miranda, S.L.C., Baker, C.J., Woodbridge, K., et al: ‘Phased array radar resource management: a comparison of scheduling algorithms’. Proc. of IEEE Radar Conf., Philadelphia, USA, 2004.
    13. 13)
      • 10. Jin, H., Wang, H.A., Wang, Q., et al: ‘An integrated design method of task priority’, J. Softw., 2003, 14, (3), pp. 376382.
    14. 14)
      • 25. Zhang, H.W., Xie, J.W., Ge, J., et al: ‘A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar’, Eur. J. Oper. Res., 2019, 272, (3), pp. 868878.
    15. 15)
      • 29. Tei, W.K., Yung, S.C., Chin, F.K., et al: ‘Real-time dwell scheduling of component-oriented phased array radars’, IEEE Trans. Comput., 2005, 54, (1), pp. 4760.
    16. 16)
      • 19. Cheng, T., He, Z.S., Li, H.Y.: ‘Adaptive dwell scheduling for digital array radar based on online pulse interleaving’, Chin. J. Electron., 2009, 18, (3), pp. 574578.
    17. 17)
      • 16. Orman, A.J., Potts, C.N., Shahani, A.K., et al: ‘Scheduling for a multifunction phased array radar system’, Eur. J. Oper. Res., 1996, 90, (1), pp. 1325.
    18. 18)
      • 4. Orman, A.J., Potts, C.N., Shahani, A.K., et al: ‘Scheduling for a multifunction phased array radar system’, Eur. J. Oper. Res., 1996, 90, (1), pp. 1325.
    19. 19)
      • 24. Shaghaghi, M., Adve, R.S.: ‘Task selection and scheduling in multifunction multichannel radars’. Proc. of IEEE Radar Conf., Seattle, USA, 2017.
    20. 20)
      • 6. Lu, J.B., Hu, W.D., Yu, W.X.: ‘Research on real-time scheduling algorithm for multifunction phased array radar’, Acta Electron. Sin., 2006, 34, (4), pp. 732736.
    21. 21)
      • 22. Lu, J.B., Hu, W.D., Yu, W.X.: ‘Adaptive scheduling algorithm for real-time dwells in multifunction phased array radars’, J. Syst. Eng. Electron., 2005, 27, (12), pp. 19811984.
    22. 22)
      • 1. Bil, R., Holpp, W.: ‘Modern phased array radar systems in Germany’. Proc. of IEEE Int. Symp. on Phased Array Systems and Technology., Waltham, USA, 2016, pp. 1117.
    23. 23)
      • 15. Jang, D.S., Choi, H.L., Roh, J.E.: ‘A time-window-based task scheduling approach for multifunction phased array radars’. Proc. of Int. Conf. on Control, Automation and Systems., Gyeonggi-do, South Korea, 2011, pp. 16.
    24. 24)
      • 26. Mir, H., Abdelaziz, F.B.: ‘Cyclic task scheduling for multifunction radar’, IEEE Trans. Autom. Sci. Eng., 2012, 9, (3), pp. 529537.
    25. 25)
      • 13. Zhang, H.W., Xie, J.W., Shi, J.P., et al: ‘Online interleaving scheduling algorithm over dynamic priority for the air defense phased array radar’, Acta Electron. Sin., 2018, 46, (1), pp. 5560.
    26. 26)
      • 21. Zhang, H.W., Xie, J.W., Zhang, Z.J., et al: ‘Pulse interleaving scheduling algorithm for digital array radar’, J. Syst. Eng. Electron., 2018, 29, (1), pp. 6773.
    27. 27)
      • 8. Lu, J.B., Xiao, H., Xi, Z.M., et al: ‘Phased array radar resource management: task scheduling and performance evaluation’, J. Comput. Inf. Syst., 2013, 9, (3), pp. 11311138.
    28. 28)
      • 14. Huizing, A.G., Bloemen, A.A.F.: ‘An efficient scheduling algorithm for multifunction radar’. Proc. of IEEE Int. Symp. on Phased Array Systems and Technology., Boston, USA, 1996, pp. 359364.
    29. 29)
      • 9. Lu, J.B.: ‘Theory and method of resource optimization and management for phased array radars’. PhD thesis, National University of Defense Technology, 2007.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0163
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0163
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading