Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Data-based differential matched-mode source depth estimation for a moving source

For locating a target moving in a more general track relative to the single receiver and at an ultra-low frequency (<100 Hz) effectively, a differential matched-mode method is proposed to estimate the depth of a moving source. It relies on the Hankel transform fast Fourier transform (FFT) to estimate the modal wavenumber difference spectrum for extracting source depth information. For the real data, the received signal as a function of the range is first processed by FFT per block to obtain the pressure field per range. Then these pressure fields are steered and beamformed according to the synthetic aperture created by the source motion to yield the modal wavenumber difference spectrum. A normalised source-depth ambiguity function configured using these spectral peaks is applied to estimate the source depth with knowledge of the mode depth functions or nominal modal functions. Numerical simulation and experimental data all have tested this method with reasonable success especially when the source travels in a non-radial direction relative to the single receiver.

References

    1. 1)
      • 15. Yang, T.C.: ‘Source depth estimation based on synthetic aperture beamforming for a moving source’, J. Acoust. Soc. Am., 2015, 138, (3), pp. 16781686.
    2. 2)
      • 1. Ozard, J.M.: ‘Matched field processing in shallow water for range, depth, and bearing determination: results of experiment and simulation’, J. Acoust. Soc. Am., 1989, 86, (2), pp. 744753.
    3. 3)
      • 12. Yann, L.G., Francoi, X.S., Julien, B.: ‘Performance analysis of single-receiver matched-node localization’, IEEE J. Oceanic Eng., 2017, 99, pp. 114.
    4. 4)
      • 6. Wang, Y., Peng, H..: ‘Robust matched mode processing for source localization using convex optimization’. 2017 IEEE Int. Conf. on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 2017, pp. 14.
    5. 5)
      • 18. Lyons, R.G.: ‘Understanding digital signal processing’ (Prentice Hall, Upper Saddle River, NJ, USA, 2010).
    6. 6)
      • 19. Available at http://oalib.hlsresearch.com/Modes/AcousticsToolbox. Accessed on 16, Jan. 2018.
    7. 7)
      • 7. Frazer, L., Pecholcs, P.: ‘Single-hydrophone localization’, J. Acoust. Soc. Am., 1990, 88, (2), pp. 9951002.
    8. 8)
      • 4. Hursky, P., Hodgkiss, W.S., Kuperman, W.A.: ‘Matched field processing with data-derived modes’, J. Acoust. Soc. Am., 2001, 109, (4), pp. 13551366.
    9. 9)
      • 14. Yang, T.C.: ‘Data-based matched-mode source localization for a moving source’, J. Acoust. Soc. Am., 2014, 135, (3), pp. 12181230.
    10. 10)
      • 3. Yang, T.C.: ‘Effectiveness of mode filtering: a comparison of matched-field and matched-mode processing’, J. Acoust. Soc. Am., 1990, 87, (5), pp. 20722084.
    11. 11)
      • 16. Frisk, G.V., Lynch, J.F.: ‘Shallow water waveguide characterization using the Hankel transform’, J. Acoust. Soc. Am., 1984, 76, pp. 205216.
    12. 12)
      • 11. Julien, B., Aaron, T.: ‘Range and depth estimation of bowhead whale calls in the Arctic using a single hydrophone’. 2014 IEEE Sensor Systems for a Changing Ocean (SSCO), Brest, France, 2014, pp. 14.
    13. 13)
      • 17. Jsensen, F.B., Kuperman, W.A., Porter, M.B., et al: ‘Computational ocean acoustics’ (Springer, New York, NY, USA, 2011).
    14. 14)
      • 5. Barbara, N., Mars, J.I., Lacoume, J.L.: ‘Source depth estimation using a horizontal array by matched-mode processing in the frequency-wavenumber domain’, J. Appl. Signal Process., 2006, 2006, pp. 116.
    15. 15)
      • 13. Yang, T.C.: ‘Moving source localization and tracking based on data’. OCEANS 2014, Taipei, 2014, pp. 18.
    16. 16)
      • 9. Kuperman, W., Spain, G.D, Heaney, K.: ‘Long range source localization from single hydrophone spectrograms’, J. Acoust. Soc. Am., 2001, 109, (5), pp. 19351943.
    17. 17)
      • 8. Jesus, S.B., Porter, Y., Ephan, S., et al: ‘Single hydrophone source localization’, IEEE J. Oceanic Eng., 2000, 25, (3), pp. 337346.
    18. 18)
      • 2. Baggeroer, A.B., Kuperman, W.A., Mikhalevsky, P.N.: ‘An overview of matched field methods in ocean acoustics’, IEEE J. Oceanic Eng., 1993, 18, pp. 401424.
    19. 19)
      • 20. Walker, S.C., Roux, P., Kuperman, W.A.: ‘Modal Doppler theory of an arbitrarily accelerating continuous-wave source applied to mode extraction in the oceanic waveguide’, J. Acoust. Soc. Am., 2007, 122, pp. 14261439.
    20. 20)
      • 10. Gregoire, L.T, Josep, T., Barbara, N., et al: ‘Source localization on a single hydrophone’. OCEANS 2008, Quebec, QC, Canada, 2018, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0141
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0141
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address