access icon free Robust particle filter based on Huber function for underwater terrain-aided navigation

Terrain-aided navigation (TAN) is a promising technique to determine the location of underwater vehicle by matching terrain measurement against a known map. The particle filter (PF) is a natural choice for TAN because of its ability to handle non-linear, multimodal problems. However, the terrain measurements are vulnerable to outliers, which will cause the PF to degrade or even diverge. Modification of the Gaussian likelihood function by using robust cost functions is a way to reduce the effect of outliers on an estimate. The authors propose to use the Huber function to modify the measurement model used to set importance weights in a PF. They verify their method in simulations of multi-beam sonar in a real underwater digital map. The results demonstrate that the proposed method is more robust to outliers than the standard PF (SPF).

Inspec keywords: oceanographic techniques; path planning; particle filtering (numerical methods); geophysical signal processing; radar signal processing; Gaussian processes; terrain mapping; sonar; autonomous underwater vehicles

Other keywords: multibeam sonar; robust particle filter; Huber function; measurement model; robust cost functions; underwater vehicle; Gaussian likelihood function; terrain measurement; TAN; underwater terrain-aided navigation; underwater digital map; multimodal problems

Subjects: Signal processing and detection; Geophysics computing; Filtering methods in signal processing; Monte Carlo methods; Probability theory, stochastic processes, and statistics; Oceanographic and hydrological techniques and equipment; Data and information; acquisition, processing, storage and dissemination in geophysics; Mobile robots; Geography and cartography computing; Sonar and acoustic radar; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Telerobotics; Monte Carlo methods

References

    1. 1)
      • 14. Peng, D., Zhou, T., Li, H., et al: ‘Terrain aided navigation for underwater vehicles using maximum likelihood method’. Conf. IEEE/OES China Ocean Acoustics, Harbin, China, January 2016, pp. 16.
    2. 2)
      • 1. Paull, L., Saeedi, S., Seto, M., et al: ‘AUV navigation and localization: a review’, IEEE J. Ocean Eng., 2013, 39, (1), pp. 131149.
    3. 3)
      • 24. Donovan, G.T.: ‘Development and testing of a real-time terrain navigation method for AUVs’. Conf. OCEANS'11 MTS/IEEE KONA, Waikoloa, HI, USA, September 2011, pp. 19.
    4. 4)
      • 13. Wu, Z., Wang, Y., Pei, Z., et al: ‘An improved matching algorithm for the underwater navigation’. Int. Conf. Control, Decision and Information Technologies (CoDIT), Thessaloniki, Greece, April 2018, pp. 888892.
    5. 5)
      • 6. Golden, J.P.: ‘Terrain contour matching (TERCOM): a cruise missile guidance aid’. Proc. Image Processing for Missile Guidance, San Diego, CA, USA, December 1980, pp. 1018.
    6. 6)
      • 26. Dektor, S., Rock, S.: ‘Robust adaptive terrain-relative navigation’. Conf. IEEE Oceans, St. John's, NL, Canada, September 2014, pp. 110.
    7. 7)
      • 34. Gustafsson, F., Gunnarsson, F., Bergman, N., et al: ‘Particle filters for positioning, navigation, and tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 425437.
    8. 8)
      • 18. Bergman, N.: ‘Recursive Bayesian estimation-navigation and tracking applications’. PhD thesis, Linkoping University, Sweden, 1999.
    9. 9)
      • 35. Karlgaard, C.D., Schaub, H.: ‘Huber-based divided difference filtering’, J. Guid. Control Dyn., 2007, 30, (3), pp. 885891.
    10. 10)
      • 28. Nygren, I.: ‘Terrain navigation for underwater vehicles’. PhD thesis, Royal Institute of Technology (KTH), Sweden, 2005.
    11. 11)
      • 7. Hostetler, L., Andreas, R.: ‘Nonlinear Kalman filtering techniques for terrainaided navigation’, IEEE Trans. Autom. Control, 1983, 28, (3), pp. 315323.
    12. 12)
      • 36. Karlgaard, C.D.: ‘Nonlinear regression Huber–Kalman filtering and fixed-interval smoothing’, J. Guid. Control Dyn., 2015, 38, (2), pp. 322330.
    13. 13)
      • 16. Duník, J., Soták, M., Veselý, M., et al: ‘Design of Rao–Blackwellized point-mass filter with application in terrain aided navigation’, IEEE Trans. Aerosp. Electron. Syst., 2019, 55, (1), pp. 251272.
    14. 14)
      • 32. Zhang, K., Li, Y., Zhao, J., et al: ‘A study of underwater terrain navigation based on the robust matching method’, J. Navig., 2014, 67, (4), pp. 569578.
    15. 15)
      • 25. Teixeira, F.C., Quintas, J., Maurya, P., et al: ‘Robust particle filter formulations with application to terrain-aided navigation’, Int. J. Adapt. Control Signal Process., 2017, 31, (4), pp. 608651.
    16. 16)
      • 3. Brian, C., Ralf, B.: ‘Terrain-aided navigation for an underwater glider’, J. Field Robot., 2015, 32, (7), pp. 935951.
    17. 17)
      • 30. Karlgaard, C.D.: ‘Robust adaptive estimation for autonomous rendezvous in elliptical orbit’. PhD thesis, Virginia Polytechnic Institute and State University, USA, 2010.
    18. 18)
      • 8. Rock, S.M., Hobson, B., Houts, S.E.: ‘Return-to-site of an AUV using terrain-relative navigation: field trials’. Conf. IEEE/OES Autonomous Underwater Vehicles (AUV), Oxford, MS, USA, October 2014, pp. 18.
    19. 19)
      • 37. Li, K., Chang, L.: ‘Robust Gaussian particle filter based on modified likelihood function’, IET Sci. Meas. Technol., 2017, 12, (1), pp. 132137.
    20. 20)
      • 33. Doucet, A., Godsill, S., Andrieu, C.: ‘On sequential Monte Carlo sampling methods for Bayesian filtering’, Stat. Comput., 2000, 10, (3), pp. 197208.
    21. 21)
      • 22. Anonsen, K.B., Hallingstad, O.: ‘Terrain aided underwater navigation using point mass and particle filters’. Conf. IEEE/ION Position Location and Navigation, Coronado, CA, USA, April 2006, pp. 10271035.
    22. 22)
      • 29. Huber, P.J.: ‘Robust statistics’ (Springer Press, Berlin Heidelberg, 2011, 1st edn.).
    23. 23)
      • 19. Melo, J., Matos, A.: ‘On the use of particle filters for terrain based navigation of sensor-limited AUVs’. Conf. MTS/IEEE Oceans, Bergen, Norway, June 2013, pp. 18.
    24. 24)
      • 12. Zhou, L., Cheng, X., Zhu, Y., et al: ‘Terrain aided navigation for long-range AUVs using a new bathymetric contour matching method’. IEEE Int. Conf. Advanced Intelligent Mechatronics, Busan, South Korea, July 2015, pp. 249254.
    25. 25)
      • 17. Anonsen, K.B.: ‘Advance in terrain aided navigation for underwater vehicles’. PhD thesis, Norwegian University of Science and Technology, Norway, 2010.
    26. 26)
      • 15. Anonsen, K.B., Hallingstad, O.: ‘Sigma point Kalman filter for underwater terrain-based navigation’, IFAC Proc. Vol., 2007, 40, (17), pp. 106110.
    27. 27)
      • 2. Tan, Y.T., Chitre, M., Hover, F.S.: ‘Cooperative bathymetry-based localization using low-cost autonomous underwater vehicles’, Auton. Robot., 2016, 40, (7), pp. 11871205.
    28. 28)
      • 21. Murangira, A., Musso, C., Nikiforov, I.: ‘Particle filter divergence monitoring with application to terrain navigation’. Int. Conf. Information Fusion, Singapore, Singapore, July 2012, pp. 794801.
    29. 29)
      • 11. Brian, C., Ralf, B.: ‘Towards online terrain aided navigation of underwater gliders’. Conf. IEEE/OES Autonomous Underwater Vehicles (AUV), Oxford, MS, USA, October 2014, pp. 15.
    30. 30)
      • 23. Donovan, G.T.: ‘Position error correction for an autonomous underwater vehicle inertial navigation system (INS) using a particle filter’, IEEE J. Ocean. Eng., 2012, 37, (3), pp. 431445.
    31. 31)
      • 5. Melo, J., Matos, A.: ‘Survey on advances on terrain based navigation for autonomous under vehicles’, Ocean Eng.., 2017, 39, (1), pp. 250264.
    32. 32)
      • 31. Zhao, J., Netto, M., Mili, L.: ‘A robust iterated extended Kalman filter for power system dynamic state estimation’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 32053216.
    33. 33)
      • 20. Zhou, T., Peng, D., Xu, C., et al: ‘Adaptive particle filter based on Kullback–Leibler distance for underwater terrain aided navigation with multi-beam sonar’, IET Radar Sonar Navig., 2018, 12, (4), pp. 433441.
    34. 34)
      • 9. Anonsen, K.B., Hagen, O.K., Hegrenas, O., et al: ‘The HUGIN AUV terrain navigation module’. Proc. Conf. IEEE Oceans, San Diego, CA, USA, September 2013, pp. 2327.
    35. 35)
      • 10. Hagen, O.K., Anonsen, K.B., Sabo, T.O.: ‘Toward autonomous mapping with AUVs-line-to-line terrain navigation’. Conf. MTS/IEEE/OCEANS, Washington, DC, USA, October 2015, pp. 18.
    36. 36)
      • 4. Meduna, D.K.: ‘Terrain relative navigation for sensor-limited systems with application to underwater vehicles’. PhD thesis, Stanford University, USA, 2011.
    37. 37)
      • 27. Dektor, S., Rock, S.: ‘Improving robustness of terrain-relative navigation for AUVs in regions with flat terrain’. Conf. IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, UK, September 2012, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0123
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading