Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Manifold ambiguity and performance analysis for electric-measurement-only polarisation sensitive arrays

Direction-of-arrival and polarisation estimation is an important issue in array signal processing. Among various polarisation sensitive arrays (PSAs), arrays with only measurements of the electric field are most extensively applied in practice. In this study, the manifold ambiguity of such electric-measurement-only PSA is investigated to evaluate the uniqueness of parameter estimation. For co-centred PSAs and spatially-spread PSAs, the necessary and sufficient conditions of linearly dependent steering vectors are established based on the cosine similarity. Furthermore, for various arrays, the explicit parameter sets corresponding to trivial manifold ambiguity are provided. Moreover, for the noisy case, the closed-form Cramér-Rao bounds for arbitrary PSAs are also presented to evaluate the performance bound of parameter estimation with the considered arrays. Simulations and experimental results of high-frequency radar further reveal the influences of array configurations on the identifiability and performance bound of PSAs, and verify the corresponding theoretical results. The presented results can be easily generalised to other PSAs containing magnetic measurements, which provide guidelines for designing the spatial and polarimetric configuration of PSAs to ensure unambiguous and accurate parameter estimation.

References

    1. 1)
      • 8. Li, Y., Zhang, J.Q.: ‘An enumerative nonlinear programming approach to direction finding with a general spatially spread electromagnetic vector sensor array’, Signal Process.., 2013, 93, (4), pp. 856865.
    2. 2)
      • 27. Magnus, J. R., Neudecker, H.: ‘The commutation matrix: some properties and applications’, Ann. Stat., 1979, 7, (2), pp. 381394.
    3. 3)
      • 21. Ma, J., Shi, L., Li, Y., et al: ‘Angle estimation with polarization filtering: A single snapshot approach’, IEEE Trans. Aerosp. Electron. Syst., 2018, 54, (1), pp. 257268.
    4. 4)
      • 16. Hochwald, B., Nehorai, A.: ‘Identifiability in array processing models with vector-sensor applications’, IEEE Trans. Signal Process., 1996, 44, (1), pp. 8395.
    5. 5)
      • 25. Collett, E.: ‘Field guide to polarization’ (SPIE Press, Bellingham, Washington, 2005).
    6. 6)
      • 3. Ho, K.C., Tan, K.C., Tan, B.T.G.: ‘Linear dependence of steering vectors associated with tripole arrays’, IEEE Trans. Antennas Propag., 1998, 46, (11), pp. 17051711.
    7. 7)
      • 4. Li, D., Feng, Z.H., She, J.Z.: ‘Linear dependent steering vectors distribution area in tripole arrays’. Proc. Int. Conf. Microwave and Millimeter Wave Technology, Guilin, China, April 2007, pp. 14.
    8. 8)
      • 9. Yuan, X.: ‘Coherent sources direction finding and polarization estimation with various compositions of spatially spread polarized antenna arrays’, Signal Process.., 2014, 102, pp. 265281.
    9. 9)
      • 29. Stoica, P., Larsson, E.G., Gershman, A.B.: ‘The stochastic CRB for array processing: a textbook derivation’, IEEE Signal Process. Lett., 2001, 8, (5), pp. 148150.
    10. 10)
      • 19. Zhao, C.L., Mao, X.P., Yang, Y.L., et al: ‘Deterministic CRB and manifold ambiguity analysis for polarization sensitive arrays’. 2018 IEEE Radar Conf. (RadarConf18), OKC, USA, April 2018, pp. 759764.
    11. 11)
      • 1. Nehorai, A., Paldi, E.: ‘Vector-sensor array processing for electromagnetic source localization’, IEEE Trans. Signal Process., 1994, 42, (2), pp. 376398.
    12. 12)
      • 5. Au-Yeung, C.K., Wong, K.T.: ‘CRB: sinusoid-sources’ estimation using collocated dipoles/loops’, IEEE Trans. Aerosp. Electron. Syst., 2009, 45, (1), pp. 94109.
    13. 13)
      • 10. Piao, D., Yang, L., Guo, Q., et al: ‘Measurement-based performance comparison of colocated tripolarized loop and dipole antennas’, IEEE Trans. Antennas Propag., 2015, 63, (8), pp. 33713379.
    14. 14)
      • 14. Tian, Y., Sun, X., Zhao, S.: ‘Sparse-reconstruction-based direction of arrival, polarisation and power estimation using a cross-dipole array’, IET Radar, Sonar Navig., 2015, 9, (6), pp. 727731.
    15. 15)
      • 17. Tan, K.C., Ho, K.C., Nehorai, A.: ‘Linear independence of steering vectors of an electromagnetic vector sensor’, IEEE Trans. Signal Process., 1996, 44, (12), pp. 30993107.
    16. 16)
      • 12. Hou, H., Mao, X., Liu, Y.: ‘Oblique projection for direction-of-arrival estimation of hybrid completely polarised and partially polarised signals with arbitrary polarimetric array configuration’, IET Signal Process.., 2017, 11, (8), pp. 893900.
    17. 17)
      • 23. Hawes, M., Mihaylova, L., Liu, W.: ‘Location and orientation optimization for spatially stretched tripole arrays based on compressive sensing’, IEEE Trans. Signal Process., 2017, 65, (9), pp. 24112420.
    18. 18)
      • 30. Schmidt, R.: ‘Multiple emitter location and signal parameter estimation’, IEEE Trans. Antennas Propag., 1986, 34, (3), pp. 276280.
    19. 19)
      • 11. Hurtado, M., Nehorai, A.: ‘Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (2), pp. 780789.
    20. 20)
      • 22. He, Z., Zhao, Z., Nie, Z., et al: ‘Resolving manifold ambiguities for sparse array using planar substrates’, IEEE Trans. Antennas Propag., 2012, 60, (5), pp. 25582562.
    21. 21)
      • 15. Gong, X.F., Liu, Z.W., Xu, Y.G.: ‘Coherent source localization: bicomplex polarimetric smoothing with electromagnetic vector-sensors’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (3), pp. 22682285.
    22. 22)
      • 20. Mao, X.P., Yang, Y.L., Hong, H., et al: ‘Multi-domain collaborative filter for interference suppressing’, IET Signal Process.., 2016, 10, (9), pp. 11571168.
    23. 23)
      • 18. Tan, K.C., Ho, K.C., Nehorai, A.: ‘Uniqueness study of measurements obtainable with arrays of electromagnetic vector sensors’, IEEE Trans. Signal Process., 1996, 44, (4), pp. 10361039.
    24. 24)
      • 2. Lin, C.H., Fang, W.H.: ‘Efficient estimation of signal parameters via rotational invariance technique-based algorithm with automatic pairing for two-dimensional angle and polarisation estimation using crossed dipoles’, IET Signal Process.., 2013, 8, (4), pp. 309319.
    25. 25)
      • 24. Gazzah, H., Delmas, J.P.: ‘CRB-based design of linear antenna arrays for near-field source localization’, IEEE Trans. Antennas Propag., 2014, 62, (4), pp. 19651974.
    26. 26)
      • 7. Tian, Y., Wen, B., Tan, J., et al: ‘Study on pattern distortion and DOA estimation performance of crossed-loop/monopole antenna in HF radar’, IEEE Trans. Antennas Propag., 2017, 65, (11), pp. 60956106.
    27. 27)
      • 26. Xiong, W., Picheral, J., Marcos, S.: ‘Array geometry impact on music in the presence of spatially distributed sources’, Digital Signal Process., 2017, 63, pp. 155163.
    28. 28)
      • 28. Stoica, P., Moses, R.L.: ‘Spectral analysis of signals’ (Pearson Prentice Hall, Upper Saddle River, New Jersey, 2005), pp. 355376.
    29. 29)
      • 6. Xu, Z., Yuan, X.: ‘Cramér-Rao bounds of angle-of-arrival and polarisation estimation for various triads’, IET Microw., Antennas Propag., 2012, 6, (15), pp. 16511664.
    30. 30)
      • 13. Chintagunta, S., Ponnusamy, P.: ‘2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors’, Signal Process.., 2018, 147, pp. 163172.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0067
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0067
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address