access icon free Composite model for the microwave Doppler spectrum of the sea surface

This article describes a numerically inexpensive composite model for the microwave Doppler spectrum of sea clutter. The model is based on the small perturbation method, includes the contribution of specular reflections and uses a linear description of the sea surface to provide an analytically tractable description of the Doppler spectrum. The analytical model is tested by comparison with direct simulation. The model results are found to be in reasonable agreement with measured data and with recently published results produced using the considerably more complex and numerically challenging second-order small-slope approximation.

Inspec keywords: ocean waves; radar clutter; Doppler radar; remote sensing by radar

Other keywords: numerically inexpensive composite model; microwave Doppler spectrum; analytically tractable description; analytical model; perturbation method; sea clutter; linear description; sea surface; specular reflections

Subjects: Winds and their effects in the lower atmosphere; Sea-air interactions; Surface waves, tides, and sea level; Other topics in statistics; Radar equipment, systems and applications

References

    1. 1)
      • 29. Adler, R.J., Firman, D.: ‘A non-Gaussian model for random surfaces’, Phil. Trans. R. Soc. Lond., 1981, A303, pp. 434462.
    2. 2)
      • 1. Observing the Earth’: http://www.esa.int/Our_Activities/Observing_the_Earth/Satellites_stay_current_on_ocean_currents, accessed 21 January 2018.
    3. 3)
      • 31. Dennis, M. R.: ‘Nodal densities of planar Gaussian random waves’, Eur. Phys. J. Spec. Top., 2007, 145, pp. 191210.
    4. 4)
      • 18. Romeiser, R., Thompson, D.R.: ‘Numerical study on the along-track interferometric radar imaging mechanism of ocean surface currents’, IEEE Trans. Geosci. Remote Sens., 2000, 38, (1), pp. 446458.
    5. 5)
      • 4. Chapron, B., Collard, F., Ardhuin, F.: ‘Direct measurements of ocean surface velocity from space: interpretation and validation’, J. Geophys. Res., 2005, 110, p. C07008.
    6. 6)
      • 28. Longuet-Higgins, M.S.: ‘Statistical properties of an isotropic random surface’, Phil. Trans. Roy. Soc. Lond. A, 1957, 250, (975), pp. 157174.
    7. 7)
      • 22. Elfouhaily T. Chapron, B., et al: ‘A unified directional spectrum of small-scale water waves’, J. Geophys. Res., 1990, 95, pp. 1153111546.
    8. 8)
      • 14. Toporkov, J.V., Sletten, M.A.: ‘Statistical properties of low-grazing range-resolved sea surface backscatter generated through two-dimensional direct numerical simulations’, IEEE Trans. Geosci. Remote Sens., 2007, 45, (5), pp. 11811197.
    9. 9)
      • 32. Ng, E.W., Geller, M.: ‘A table of integrals of the error functions’, J. Res. Natl. Bureau Stand., B, 1969, 73B, pp. 120.
    10. 10)
      • 21. Holliday, D., St-Cyr, G., Woods, N.E.: ‘A radar ocean imaging model for small to moderate incidence angles’, Int. J. Remote Sens., 1986, 7, (12), pp. 18091834.
    11. 11)
      • 3. Romeiser, R., Breit, M., Eineder, M., et al: ‘On the suitability of terrasar-x split antenna mode for current measurements by along-track interferometry’. Proc. IGARSS, Toulouse, France, July 2003, pp. 13201322.
    12. 12)
      • 10. Watts, S., Rosenberg, L., Bocquet, S., et al: ‘The Doppler spectra of medium grazing angle sea clutter; part 2: model assessment and simulation’, IET Radar Sonar Navig., 2015, 10, (1), pp. 3242.
    13. 13)
      • 15. Valenzuela, G.R.: ‘Theories for the interaction of electromagnetic waves and oceanic waves – a review’, Boundary-Layer Meteorol, 1978, 13, pp. 6185.
    14. 14)
      • 27. Longuet-Higgins, M.S.: ‘The statistical analysis of a random, moving surface’, Phil. Trans. Roy. Soc. Lond. A, 1957, 249, (966), pp. 321386.
    15. 15)
      • 6. Lopez-Dekker, P.: ‘STEREOID: an Earth explorer 10 mission candidate to observe land, ice, and ocean dynamics’, https://ceoi.ac.uk/wp-content/uploads/docs/workshops/Challenge_Workshop_on_ESA_Earth_Explorer_10_Mission_Candidates_Dec_2018/Stereoid_overview.pdf, accessed 13th May 2019.
    16. 16)
      • 33. Gardashova, T.G., Gardashov, R.G.: ‘Simulation of statistical characteristics of light reflected by the sea surface’, Izvestiya, Atmos. Ocean. Phys., 2001, 37, (1), pp. 247269.
    17. 17)
      • 11. Walker, D.: ‘Experimentally motivated model for low grazing angle radar Doppler spectra of the sea surface’, IEE Proc. RSN, 2000, 147, (10), pp. 114120.
    18. 18)
      • 25. Thompson, D.R., Gotwols, B.L., Keller, W.C.: ‘A comparison of Ku-band Doppler measurements at 20 degree incidence with predictions from a time-dependent scattering model’, J. Geophys. Res. Atmos., 1991, 96, (C3), pp. 49474955.
    19. 19)
      • 20. Fois, F., Hoogeboom, P., Le Chevalier, F., et al: ‘An analytical model for the description of the full-polarimetric sea surface Doppler signature’, J. Geophys. Res. Oceans, 2015, 120, pp. 9881015.
    20. 20)
      • 16. Wright, J.W.: ‘A new, model for sea clutter’, IEEE Trans. Antennas Propag., 1968, 16, pp. 217223.
    21. 21)
      • 30. Fuks, I.: ‘Probability distributions of elevation and curvature of specular points at a statistically rough surface’. IEEE Trans. Antennas Propag. Soc. Int. Symp., 2005, 3A, pp. 437440.
    22. 22)
      • 2. Goldstein, R.M., Zebker, H. A.: ‘Interferometric radar map of ocean currents’, Nature, 1987, 328, pp. 707709.
    23. 23)
      • 26. Wentz, F.J., Thomas, L.A.: ‘A model function for ocean radar cross sections at 14.6 GHz’, J. Geophys. Res., 1984, 89, (C3), pp. 36893704.
    24. 24)
      • 5. Thompson, D.R., Jensen, J.R.: ‘Synthetic aperture radar interferometry applied to ship generated internal waves in the 1989 loch linnhe experiment’, J. Geophys. Res., 1993, 98, (C6), pp. 1025910269.
    25. 25)
      • 7. Ward, K., Tough, R.J.A., Watts, S.: ‘Sea clutter: scattering, the K distribution and radar performance’, (Second Edition, IET Radar, Sonar and Navigation series 25, The Institute of Engineering and Technology, 2013).
    26. 26)
      • 12. Walker, D.: ‘Doppler modelling of radar sea clutter’, IEE Proc. Radar, Sonar & Navigation, 2001, 148, (2), pp. 7380.
    27. 27)
      • 19. Zavorotny, V.U., Voronovich, A.G.: ‘Two-scale model and ocean radar Doppler spectra at moderate and low grazing angles’, IEEE Trans. Antennas Propag., 1998, 46, (1), pp. 8492.
    28. 28)
      • 23. Galloway, G.: ‘Introduction to differential geometry’, http://www.math.miami.edu/∼galloway/IntroDGnotes.pdf, accessed 21 January 2018.
    29. 29)
      • 24. Voronovich, A.: ‘Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces’, Waves Random Complex Media, 2001, 11, pp. 247269.
    30. 30)
      • 8. Rosenberg, L., Watts, S., Bocquet, S., et al: ‘Characterisation of the ingara HGA dataset’. IEEE Radar Conf., 2015.
    31. 31)
      • 17. Thompson, D.R.: ‘Calculation of microwave Doppler spectra from the ocean surface with a time-dependent composite model’, in Komen, G.J., Oost, W.A. (Eds): ‘Radar scattering from modulated wind waves’ (Kluwer, Dordrecht, The Netherlands, 1989), pp. 2740.
    32. 32)
      • 13. Whitrow, J.L.: ‘A model of low grazing angle sea clutter for coherent radar performance analysis’, DSTO-TR-2864, 2017.
    33. 33)
      • 9. Watts, S., Rosenberg, L., Ritchie, M., et al: ‘The Doppler spectra of medium grazing angle sea clutter; part 1: characterisation’, IET Radar Sonar Navig.., 2015, 10, (1), pp. 2431.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0065
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading