Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Hierarchical coastline detection in SAR images based on spectral-textural features and global–local information

Hierarchical coastline detection in SAR images based on spectral-textural features and global–local information

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a novel approach to detect the coastline from single-polarisation synthetic aperture radar (SAR) images. The proposed method encompasses land/sea segmentation, coastline detection, and refinement. A novel spectral–textural segmentation framework (STSF) is proposed by using the spectral–textural features extracted from the input image patches. The STSF distinguishes various coastal/sea types and is robust to noise. Also, a hierarchical region-based level set method (LSM) is proposed to detect the coastline, accurately. The first LSM step applies global information for evolution. The LSM initialisation is performed using the obtained rough segmentation, which is very practical as the final LSM evolution depends on the initial value, particularly on complex SAR images. The global region-based LSM (GRB-LSM) step modifies the previous segmentation and approaches to the coastline. To improve accuracy, a local region-based LSM (LRB-LSM) is proposed. Therefore, in the second LSM step, the LRB-LSM applies to the results of GRB-LSM step. The LRB-LSM improves the accuracy of the detected coastline while ensuring its smoothness. To verify the performance of the proposed method, several high-resolution SAR images from different microwave bands and various coastal environments are used. The performance of the proposed method is confirmed by the given experiments.

References

    1. 1)
      • 10. Liu, C., Xiao, Y., Yang, J.: ‘A coastline detection method in polarimetric SAR images mixing the region-based and edge-based active contour models’, IEEE Trans. Geosci. Remote Sens., 2017, 55, (7), pp. 37353747.
    2. 2)
      • 1. Paravolidakis, V., Ragia, L., Moirogiorgou, K., et al: ‘Automatic coastline extraction using edge detection and optimization procedures’, Geosciences (Basel), 2018, 8, (11), p. 407.
    3. 3)
      • 34. Fuse, T., Ohkura, T.: ‘Development of shoreline extraction method based on spatial pattern analysis of satellite SAR images’, Remote Sens., 2018, 10, (9), p. 1361.
    4. 4)
      • 36. Yuan, J., Wang, D., Li, R.: ‘Image segmentation using local spectral histograms and linear regression’, Pattern Recognit. Lett., 2012, 33, (5), pp. 615622.
    5. 5)
      • 40. Li, C., Kao, C.-Y., Gore, J.C., et al: ‘Minimization of region-scalable fitting energy for image segmentation’, IEEE Trans. Image Process., 2008, 17, (10), p. 1940.
    6. 6)
      • 14. Modava, M., Akbarizadeh, G., Soroosh, M.: ‘Integration of spectral histogram and level set for coastline detection in SAR images’, IEEE Trans. Aerosp. Electron. Syst., 2018, 55, (2), pp. 810819.
    7. 7)
      • 18. Yu, K., Hu, C., Muller-Karger, F.E., et al: ‘Shoreline changes in west-central Florida between 1987 and 2008 from LandSat observations’, Int. J. Remote Sens., 2011, 32, (23), pp. 82998313.
    8. 8)
      • 5. Qiao, G., Mi, H., Wang, W., et al: ‘55-Year (1960–2015) spatiotemporal shoreline change analysis using historical DISP and LandSat time series data in shanghai’, Int. J. Appl. Earth Obs. Geoinformation, 2018, 68, pp. 238251.
    9. 9)
      • 45. Reis, H.C., Bayram, B., Bozkurt, S., et al: ‘An extended approach of particle swarm optimization for shoreline extraction from RASAT imagery’, J. Indian Soc. Remote Sens., 2018, 46, (8), pp. 12231232.
    10. 10)
      • 27. Liu, H., Jezek, K.: ‘Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods’, Int. J. Remote Sens., 2004, 25, (5), pp. 937958.
    11. 11)
      • 12. Modava, M., Akbarizadeh, G.: ‘Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method’, Int. J. Remote Sens., 2017, 38, (2), pp. 355370.
    12. 12)
      • 6. Henry, J.B., Chastanet, P., Fellah, K., et al: ‘Envisat multi-polarized ASAR data for flood mapping’, Int. J. Remote Sens., 2006, 27, (10), pp. 19211929.
    13. 13)
      • 8. Yu, Y., Acton, S.: ‘Automated delineation of coastline from polarimetric SAR imagery’, Int. J. Remote Sens., 2004, 25, (17), pp. 34233438.
    14. 14)
      • 28. Shu, Y., Li, J., Gomes, G.: ‘Shoreline extraction from RADARSAT-2 intensity imagery using a narrow band level set segmentation approach’, Mar. Geod., 2010, 33, (2–3), pp. 187203.
    15. 15)
      • 39. Lie, J., Lysaker, M., Tai, X.-C.: ‘A binary level set model and some applications to Mumford–Shah image segmentation’, IEEE Trans. Image Process., 2006, 15, (5), pp. 11711181.
    16. 16)
      • 24. Lee, J.-S., Jurkevich, I.: ‘Coastline detection and tracing in SAR images’, IEEE Trans. Geosci. Remote Sens., 1990, 28, (4), pp. 662668.
    17. 17)
      • 26. Descombes, X., Moctezuma, M., Maître, H., et al: ‘Coastline detection by a Markovian segmentation on SAR images’, Signal Process., 1996, 55, (1), pp. 123132.
    18. 18)
      • 17. Xu, N.: ‘Detecting coastline change with all available LandSat data over 1986–2015: a case study for the state of Texas, USA’, Atmosphere (Basel), 2018, 9, (3), p. 107.
    19. 19)
      • 32. Ding, X., Nunziata, F., Li, X., et al: ‘Performance analysis and validation of waterline extraction approaches using single- and dual-polarimetric SAR data’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (3), pp. 10191027.
    20. 20)
      • 41. Chan, T.F., Vese, L.A.: ‘Active contours without edges’, IEEE Trans. Image Process., 2001, 10, (2), pp. 266277.
    21. 21)
      • 29. Al Fugura, A., Billa, L., Pradhan, B.: ‘Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image’, Estuar. Coast. Shelf Sci., 2011, 95, (4), pp. 395400.
    22. 22)
      • 33. Nunziata, F., Buono, A., Migliaccio, M., et al: ‘Dual-polarimetric C- and X-band SAR data for coastline extraction’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2016, 9, (11), pp. 49214928.
    23. 23)
      • 43. Zhang, K., Song, H., Zhang, L.: ‘Active contours driven by local image fitting energy’, Pattern Recognit., 2010, 43, (4), pp. 11991206.
    24. 24)
      • 42. Zhang, K., Zhang, L., Song, H., et al: ‘Active contours with selective local or global segmentation: a new formulation and level set method’, Image Vis. Comput., 2010, 28, (4), pp. 668676.
    25. 25)
      • 44. Lankton, S., Tannenbaum, A.: ‘Localizing region-based active contours’, IEEE Trans. Image Process., 2008, 17, (11), pp. 20292039.
    26. 26)
      • 21. Akbarizadeh, G.: ‘A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (11), pp. 43584368.
    27. 27)
      • 13. Liu, C., Yang, J., Yin, J., et al: ‘Coastline detection in SAR images using a hierarchical level set segmentation’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2016, 9, (11), pp. 49084920.
    28. 28)
      • 23. Liu, X., Jia, H., Cao, L., et al: ‘Superpixel-based coastline extraction in SAR images with speckle noise removal’. 2016 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Beijing, China, July 2016, pp. 10341037.
    29. 29)
      • 22. Braga, F., Tosi, L., Prati, C., et al: ‘Shoreline detection: capability of COSMO-SkyMed and high-resolution multispectral images’, Eur. J. Remote Sens., 2013, 46, (1), pp. 837853.
    30. 30)
      • 4. Sekovski, I., Stecchi, F., Mancini, F., et al: ‘Image classification methods applied to shoreline extraction on very high-resolution multispectral imagery’, Int. J. Remote Sens., 2014, 35, (10), pp. 35563578.
    31. 31)
      • 20. Ranjani, J.J., Thiruvengadam, S.: ‘Fast threshold selection algorithm for segmentation of synthetic aperture radar images’, IET Radar Sonar Navig., 2012, 6, (8), pp. 788795.
    32. 32)
      • 3. Sousa, W.R.D., Souto, M.V., Matos, S.S., et al: ‘Creation of a coastal evolution prognostic model using shoreline historical data and techniques of digital image processing in a GIS environment for generating future scenarios’, Int. J. Remote Sens., 2018, 39, (13), pp. 44164430.
    33. 33)
      • 9. Liu, Y., Huang, H., Qiu, Z., et al: ‘Detecting coastline change from satellite images based on beach slope estimation in a tidal flat’, Int. J. Appl. Earth Obs. Geoinformation, 2013, 23, pp. 165176.
    34. 34)
      • 46. Wang, X., Liu, Y., Ling, F., et al: ‘Fine spatial resolution coastline extraction from LandSat-8 OLI imagery by integrating downscaling and pansharpening approaches’, Remote Sens. Lett., 2018, 9, (4), pp. 314323.
    35. 35)
      • 25. Mason, D.C., Davenport, I.J.: ‘Accurate and efficient determination of the shoreline in ERS-1 SAR images’, IEEE Trans. Geosci. Remote Sens., 1996, 34, (5), pp. 12431253.
    36. 36)
      • 19. Gens, R.: ‘Remote sensing of coastlines: detection, extraction and monitoring’, Int. J. Remote Sens., 2010, 31, (7), pp. 18191836.
    37. 37)
      • 31. Buono, A., Nunziata, F., Mascolo, L., et al: ‘A multipolarization analysis of coastline extraction using X-band COSMO-SkyMed SAR data’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2014, 7, (7), pp. 28112820.
    38. 38)
      • 30. Sheng, G., Yang, W., Deng, X., et al: ‘Coastline detection in synthetic aperture radar (SAR) images by integrating watershed transformation and controllable gradient vector flow (GVF) snake model’, IEEE J. Ocean. Eng., 2012, 37, (3), pp. 375383.
    39. 39)
      • 35. Yuan, J., Wang, D., Cheriyadat, A.M.: ‘Factorization-based texture segmentation’, IEEE Trans. Image Process., 2015, 24, (11), pp. 34883497.
    40. 40)
      • 2. Addo, K.A., Walkden, M., Mills, J.P.T.: ‘Detection, measurement and prediction of shoreline recession in Accra, Ghana’, ISPRS J. Photogramm. Remote Sens., 2008, 63, (5), pp. 543558.
    41. 41)
      • 7. Modava, M., Akbarizadeh, G.: ‘A level set based method for coastline detection of SAR images’. Third Int. Conf. Pattern Recognition and Image Analysis (IPRIA), Shahrekord, Iran, April 2017, pp. 253257.
    42. 42)
      • 15. Jana, A., Maiti, S., Biswas, A.: ‘Analysis of short-term shoreline oscillations along Medinipur–Balasore coast, Bay of Bengal, India: a study based on geospatial technology’, Model. Earth Syst. Environ., 2016, 2, (2), p. 64.
    43. 43)
      • 38. Li, C., Xu, C., Gui, C., et al: ‘Level set evolution without re-initialization: a new variational formulation’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, June 2005, pp. 17.
    44. 44)
      • 16. Kankara, R., Selvan, S.C., Markose, V.J., et al: ‘Estimation of long and short term shoreline changes along Andhra Pradesh coast using remote sensing and GIS techniques’, Procedia Eng., 2015, 116, pp. 855862.
    45. 45)
      • 11. An, M., Sun, Q., Hu, J., et al: ‘Coastline detection with Gaofen-3 SAR images using an improved FCM method’, Sensors, 2018, 18, (6), p. 1898.
    46. 46)
      • 37. Paragios, N., Deriche, R.: ‘Geodesic active contours and level sets for the detection and tracking of moving objects’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (3), pp. 266280.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0063
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address