Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modifications on parametric models for distributed scattering centres on surfaces with arbitrary shapes

Distributed scattering centre (DSC) is a particular type of scattering centres which has the strongest scattering amplitude among all scattering centres. Furthermore, their distributed signatures in radar images have directly shown geometries of targets. Therefore, DSCs play an important role in target recognition. DSCs are currently described by the attributed scattering centre (ASC) model, which is developed out of the asymptotic expansion solutions to canonical geometries. However, rather than canonical geometries, real radar targets have various geometric structures, which show different signatures in radar images. In order to characterise these various signatures, the parametric model is modified. Scattered fields from planar and single-curved surfaces with arbitrary shapes are studied in this study and motivated by which, the parametric models of DSCs for more general structures are presented. To validate these models, the scattered waves and the post-imaging results simulated by these models are compared with those obtained by a rigorous full-wave numerical method, and those obtained by the conventional ASC model. The comparison results demonstrate these models have a higher accuracy over the conventional model in simulations of scattered waves, as well as inverse synthetic aperture radar image signatures of different geometric structures.

References

    1. 1)
      • 4. Liu, M., Chen, S., Wu, J., et al: ‘Sar target configuration recognition via two-stage sparse structure representation’, IEEE Trans. Geosci. Remote Sens., 2018, 56, (4), pp. 22202232.
    2. 2)
      • 1. Ash, J., Ertin, E., Potter, L.C., et al: ‘Wide-angle synthetic aperture radar imaging: models and algorithms for anisotropic scattering’, IEEE Signal Process. Mag., 2014, 31, (4), pp. 1626.
    3. 3)
      • 25. Barr, A.H.: ‘Superquadrics and angle-preserving transformations’, IEEE Comput. Soc. Press, 1981, 1, (1), pp. 1123.
    4. 4)
      • 9. Ding, B., Wen, G.: ‘Target reconstruction based on 3-d scattering center model for robust sar atr’, IEEE Trans. Geosci. Remote Sens., 2018, 56, (7), pp. 37723785.
    5. 5)
      • 16. Jackson, J.A.: ‘Analytic physical optics solution for bistatic, 3d scattering from a dihedral corner reflector’, IEEE Trans. Antennas Propag., 2012, 60, (3), pp. 14861495.
    6. 6)
      • 13. Gerry, M.J., Potter, L.C., Gupta, I.J., et al: ‘A parametric model for synthetic aperture radar measurements’, IEEE Trans. Antennas Propag., 1999, 47, (7), pp. 11791188.
    7. 7)
      • 3. Zhao, J., Zhang, M., Wang, X., et al: ‘Three-dimensional super resolution isar imaging based on 2d unitary esprit scattering centre extraction technique’, IET Radar Sonar Navig., 2017, 11, (1), pp. 98106.
    8. 8)
      • 12. Potter, L.C., Moses, R.L.: ‘Attributed scattering centers for sar atr’, IEEE Trans. Image Process., 1997, 6, (1), pp. 7991.
    9. 9)
      • 23. Guo, K., Xiao, G., Zhai, Y., et al: ‘Angular glint error simulation using attributed scattering center models’, IEEE Access, 2018, 6, pp. 3519435205.
    10. 10)
      • 30. Hughes, E.J., Leyland, M.: ‘Using multiple genetic algorithms to generate radar point-scatterer models’, IEEE Trans. Evol. Comput., 2002, 4, (2), pp. 147163.
    11. 11)
      • 15. Jackson, J.A., Rigling, B.D., Moses, R.L.: ‘Canonical scattering feature models for 3d and bistatic sar’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (2), pp. 525541.
    12. 12)
      • 26. Pan, X.M., Sheng, X.Q.: ‘A sophisticated parallel mlfma for scattering by extremely large targets’, IEEE Trans. Antennas Propag., 2008, 50, (3), pp. 129138.
    13. 13)
      • 29. Li, Q., Rothwell, E.J., Chen, K.M., et al: ‘Scattering center analysis of radar targets using fitting scheme and genetic algorithm’, IEEE Trans. Antennas Propag., 1996, 44, (2), pp. 198207.
    14. 14)
      • 17. Qu, Q., Guo, K., Sheng, X.: ‘An accurate bistatic scattering center model for extended cone-shaped targets’, IEEE Trans. Antennas Propag., 2014, 62, (10), pp. 52095218.
    15. 15)
      • 24. Knott, E.: ‘Rcs reduction of dihedral corners’, IEEE Trans. Antennas Propag., 1977, 25, (3), pp. 406409.
    16. 16)
      • 22. Liu, J., He, S., Zhang, Y., et al: ‘Scattering centers diagnosis and parameters modification of the complex targets’ geometry model based on the limited observed data’. In 2016 Progress in Electromagnetic Research Symp. (PIERS), Shanghai, China, August 2016, pp. 29732977.
    17. 17)
      • 18. Hu, J., Wang, W., Zhai, Q., et al: ‘Global scattering center extraction for radar targets using a modified ransac method’, IEEE Trans. Antennas Propag., 2016, 64, (8), pp. 35733586.
    18. 18)
      • 28. Gordon, W.B.: ‘Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields’, IEEE Trans. Antennas Propag., 1975, 23, (4), pp. 590592.
    19. 19)
      • 21. He, Y., He, S., Zhang, Y., et al: ‘A forward approach to establish parametric scattering center models for known complex radar targets applied to sar atr’, IEEE Trans. Antennas Propag., 2014, 62, (12), pp. 61926205.
    20. 20)
      • 2. Duan, J., Zhang, L., Xing, M., et al: ‘Polarimetric target decomposition based on attributed scattering center model for synthetic aperture radar targets’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (12), pp. 20952099.
    21. 21)
      • 7. Rigling, B.D., Moses, R.L.: ‘Three-dimensional surface reconstruction from multistatic sar images’, IEEE Trans. Image Process., 2005, 14, (8), pp. 11591171.
    22. 22)
      • 11. Potter, L.C., Chiang, D.M., Carriere, R., et al: ‘A gtd-based parametric model for radar scattering’, IEEE Trans. Antennas Propag., 1995, 43, (10), pp. 10581067.
    23. 23)
      • 14. Guo, K.Y., Li, Q.F., Sheng, X.Q., et al: ‘Sliding scattering center model for extended streamlined targets’, Progr. Electromagn. Res., 2013, 139, (3), pp. 499516.
    24. 24)
      • 20. Liu, H., Jiu, B., Li, F., et al: ‘Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement’, IEEE Trans. Antennas Propag., 2017, 65, (5), pp. 26042614.
    25. 25)
      • 5. Ding, B., Wen, G., Huang, X., et al: ‘Target recognition in synthetic aperture radar images via matching of attributed scattering centers’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2017, 10, (7), pp. 33343347.
    26. 26)
      • 10. Carriere, R., Moses, R.L.: ‘High resolution radar target modeling using a modified prony estimator’, IEEE Trans. Antennas Propag., 1992, 40, (1), pp. 1318.
    27. 27)
      • 19. Yun, D., Lee, J., Bae, K., et al: ‘Improvement in computation time of 3-d scattering center extraction using the shooting and bouncing ray technique’, IEEE Trans. Antennas Propag., 2017, 65, (8), pp. 41914199.
    28. 28)
      • 6. Li, T., Du, L.: ‘Target discrimination for sar atr based on scattering center feature and k-center one-class classification’, IEEE Sens. J., 2018, 18, (6), pp. 24532461.
    29. 29)
      • 8. Guo, K., Qu, Q., Sheng, X.: ‘Geometry reconstruction based on attributes of scattering centers by using time–frequency representations’, IEEE Trans. Antennas Propag., 2016, 64, (2), pp. 708720.
    30. 30)
      • 27. Ozdemir, C.: ‘Inverse synthetic aperture radar imaging with MATLAB algorithms’ (John Wiley, USA, 2012).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0035
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0035
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address