access icon free Evolutionary multi-objective optimisation of the pulse burst waveform in solid-state VHF moving target detection radar

A solid-state, very high frequency (VHF) band, moving target detection air surveillance radar requires a complex pulse burst waveform to mitigate the visibility issues originating from the blind Doppler intervals and range eclipsing. The waveform employs multiple pulse repetition frequencies to mitigate the effects of the blind Doppler intervals and interleaves short and long pulses to mitigate range eclipsing. In the authors’ previous works, they pointed out that the waveform design is a multi-objective optimisation problem and defined the mathematical model of the waveform optimisation problem. They also presented how the exact Pareto optimal (PO) set can be determined by means of exhaustive search. In this paper, they improve the mathematical model of the waveform optimisation problem by altering the way in which one of the objective functions is calculated and adding a new constraint, which eliminates meaningless solutions. Finally, they propose a solution method based on a multi-objective evolutionary algorithm. The performance evaluation test indicates that compared to the exhaustive search, the proposed method provides a solution that is insignificantly different. However, the proposed method is more scalable and requires over three orders of magnitude smaller number of comparisons to determine the PO set, which makes it more viable for the online waveform adaptation.

Inspec keywords: radar signal processing; search radar; radar tracking; search problems; radar detection; Doppler radar; object detection; Pareto optimisation; evolutionary computation

Other keywords: multiple pulse repetition frequencies; waveform optimisation problem; performance evaluation test; objective functions; complex pulse burst waveform; mathematical model; waveform design; very high frequency band; solid-state VHF band moving target detection air surveillance radar; exact Pareto optimal set; range eclipsing; online waveform adaptation; multiobjective optimisation problem; exhaustive search; evolutionary multiobjective optimisation; PO set; multiobjective evolutionary algorithm; blind Doppler intervals; high frequency band

Subjects: Combinatorial mathematics; Optimisation techniques; Radar equipment, systems and applications; Signal detection

References

    1. 1)
      • 11. Wiley, D., Parry, S., Alabaster, C., et al: ‘Performance comparison of PRF schedules for medium PRF radar’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (2), pp. 601611.
    2. 2)
      • 13. Rihaczek, A.W.: ‘A systematic approach to blind-speed elimination’, IEEE Trans. Aerosp. Electron. Syst., 1973, 9, (6), pp. 940947.
    3. 3)
      • 16. Ning, Y., Bai, X., Zhou, F., et al: ‘Method for inverse synthetic aperture radar imaging of space debris using improved genetic algorithm’, IET Radar Sonar Navig., 2017, 11, (5), pp. 812821.
    4. 4)
      • 23. Zhu, Y., Xie, J., Zheng, J., et al: ‘Research on overlapping individuals in MOEAs: causation, probability for quantity and influence on assessment’. Proc. Sixth Int. Conf. on Fuzzy Systems and Knowledge Discovery FSKD'09, Tianjin, China, August 2009, pp. 1419.
    5. 5)
      • 2. Richards, M.A., Scheer, J.A., Holm, W.A.: ‘Principles of modern radar, vol. I: basic principles’ (SciTech Publishing, Edison, NJ, USA, 2010).
    6. 6)
      • 20. Han, Q., Pan, M., Gong, S., et al: ‘Resource management of opportunistic digital array radar antenna aperture for pattern synthesis’, IET Radar Sonar Navig., 2017, 11, (5), pp. 829837.
    7. 7)
      • 8. Zhou, A., Qu, B.Y., Li, H., et al: ‘Multiobjective evolutionary algorithms: A survey of the state of the art’, Swarm. Evol. Comput., 2011, 1, (1), pp. 3249.
    8. 8)
      • 9. Davies, P.G., Hughes, E.J.: ‘Medium PRF set selection using evolutionary algorithms’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (3), pp. 933939.
    9. 9)
      • 22. Ischibuchi, H., Narukawa, K., Nojima, Y.: ‘Handling of overlapping objective vectors in evolutionary multiobjective optimization’, Int. J. Comput. Intell. Res., 2005, 1, (1), pp. 118.
    10. 10)
      • 15. Sedivy, P.: ‘Radar PRF staggering and agility control maximizing overall blind speed’. Proc. 13th Conf. on Microwave Techniques COMITE 2013, Pardubice, Czech Republic, April 2013, pp. 197200.
    11. 11)
      • 18. Winsor, C., Hughes, E.J.: ‘Optimisation and evaluation of receiver search strategies for electronic support’, IET Radar Sonar Navig., 2012, 6, (4), pp. 233240.
    12. 12)
      • 10. Alabaster, C.M., Hughes, E.J., Matthew, J.H.: ‘Medium PRF radar PRF selection using evolutionary algorithms’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (3), pp. 9901001.
    13. 13)
      • 5. Marler, R.T., Arora, J.S.: ‘Survey of multi-objective optimization methods for engineering’, Struct. Multidiscip. Optim., 2004, 26, (6), pp. 369395.
    14. 14)
      • 24. Duarte, A., Pantrigo, J.J., Pardo, E.G., et al: ‘Multi-objective variable neighborhood search: an application to combinatorial optimization problems’, J. Glob. Opt., 2015, 63, (3), pp. 515536.
    15. 15)
      • 4. Jevtić, M., Zogović, N., Graovac, S.: ‘Multiobjective approach to optimal waveform design for solid-state VHF pulse-Doppler air surveillance radar’. Proc. 2nd Int. Conf. on Electrical, Electronic and Computing Engineering IcETRAN 2015, Silver Lake, Serbia, June 2015, p. AUI2.3.16.
    16. 16)
      • 14. Stocker, A.D.: ‘Dwelltime minimization for radar target detection in the clear’, IEEE Trans. Aerosp. Electron. Syst., 1987, 23, (1), pp. 130138.
    17. 17)
      • 19. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
    18. 18)
      • 1. Skolnik, M.I.: ‘Radar handbook’ (McGraw-Hill, New York, NY, USA, 2008, 3rd edn.).
    19. 19)
      • 6. Jevtić, M., Zogović, N., Graovac, S.: ‘Optimal pulse-Doppler waveform design for VHF solid-state air surveillance radar’, in Dörner, K.F., et al (Eds.): ‘Operations research proceedings 2015’ (Springer International Publishing, Switzerland, 2017), pp. 309315.
    20. 20)
      • 7. Sen, S.K., Ali Shaykhian, G.: ‘Exhaustive versus randomized searches for nonlinear optimization in 21st century computing: solar application’, Neural Parallel Sci. Comput., 2010, 18, (3–4), pp. 487498.
    21. 21)
      • 17. Wang, J., Zhou, F., Tao, M., et al: ‘System parameter optimisation for moving target detection and imaging in multi-band synthetic aperture radar based on genetic algorithm’, IET Radar Sonar Navig., 2016, 10, (1), pp. 146154.
    22. 22)
      • 25. Graham, R.L., Knuth, D.E., Patashnik, O.: ‘Concrete mathematics – a foundation for computer science’ (Addison-Wesley Professional, Reading, MA, 1994, 2nd edn.).
    23. 23)
      • 21. Kassab, R.: ‘Design of LPI waveforms for monostatic radar’. PhD thesis, University Pierre et Marie Curie Paris VI, 2009.
    24. 24)
      • 3. Rihaczek, A.W.: ‘Choice of burst number for blind-speed avoidance’, IEEE Trans. Aerosp. Electron. Syst., 1973, 9, (5), pp. 778781.
    25. 25)
      • 12. Hughes, E.J.: ‘Radar waveform optimisation as a many-objective application benchmark’. Proc. 4th Int. Conf. on Evolutionary Multi-Criterion Optimization EMO'07, Matsushima, Japan, March 2007, pp. 700714.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2019.0033
Loading

Related content

content/journals/10.1049/iet-rsn.2019.0033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading