http://iet.metastore.ingenta.com
1887

Automatic modulation classification based on joint feature map and convolutional neural network

Automatic modulation classification based on joint feature map and convolutional neural network

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors propose an automatic modulation classification algorithm to discriminate the radar emitter signals exploiting deep learning of convolutional neural network (CNN) based on a joint feature map. The joint feature map including time-frequency map and instantaneous autocorrelation (IA) map is generated to achieve superior classification performance on the identification of both phase modulated signals and frequency modulated signals. Afterwards, a CNN is designed to extract the features of the joint feature map. Training and test samples are designed to evaluate the recognition rate of the CNN. Simulation results show that the joint feature map makes up for the weakness of a single feature map for the classification of frequency modulated signals and phase modulated signals simultaneously, and superior classification accuracy is obtained.

References

    1. 1)
      • 1. Ayazgok, S., Erdem, C., Ozturk, M.T., et al: ‘Automatic antenna scan type classification for next-generation electronic warfare receivers’, IET Radar Sonar Navig., 2018, 12, (4), pp. 466474.
    2. 2)
      • 2. Dabcevic, K., Mughal, M.O., Marcenaro, L., et al: ‘Cognitive radio as the facilitator for advanced communications electronic warfare solutions’, J. Signal. Process. Syst., 2016, 83, (1), pp. 2944.
    3. 3)
      • 3. Dobre, O.A., Abdi, A., Bar-Ness, Y., et al: ‘Survey of automatic modulation classification techniques: classical approaches and new trends’, IET Commun., 2007, 1, (2), pp. 137156.
    4. 4)
      • 4. Ho, K.C., Prokopiw, W., Chan, Y.T.: ‘Modulation identification of digital signals by the wavelet transform’, IEE Proc., Radar Sonar Navig., 2000, 147, (4), pp. 169176.
    5. 5)
      • 5. Swami, A., Sadler, B.M.: ‘Hierarchical digital modulation classification using cumulants’, IEEE Trans. Commun., 2000, 48, (3), pp. 416429.
    6. 6)
      • 6. Azzouz, E.E., Nandi, A.K.: ‘Modulation recognition using artificial neural networks’, Signal Process., 1996, 56, (2), pp. 165175.
    7. 7)
      • 7. Ochiai, H.: ‘High-order moments and Gaussianity of single-carrier and OFDM signals’, IEEE Trans. Commun., 2015, 63, (12), pp. 49644976.
    8. 8)
      • 8. Tian, Z., Tafesse, Y., Sadler, B.M.: ‘Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing’, IEEE. J. Sel. Top. Signal. Process., 2012, 6, (1), pp. 5869.
    9. 9)
      • 9. Cirillo, L., Zoubir, A., Amin, M.: ‘Parameter estimation for locally linear FM signals using a time-frequency Hough transform’, IEEE Trans. Signal Process., 2008, 56, (9), pp. 41624175.
    10. 10)
      • 10. Khan, W., Qureshi, I.M., Sultan, K.: ‘Ambiguity function of phased–MIMO radar with colocated antennas and its properties’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (7), pp. 12201224.
    11. 11)
      • 11. Dhar, S., Cherkassky, V.: ‘Development and evaluation of cost-sensitive universum-SVM’, IEEE Trans. Cybern., 2017, 45, (4), pp. 806818.
    12. 12)
      • 12. Li, X., Liu, H.: ‘Greedy optimization for K-means-based consensus clustering’, Tsinghua Sci. Technol., 2018, 23, (2), pp. 184194.
    13. 13)
      • 13. Guo, Q., Nan, P., Zhang, X., et al: ‘Recognition of radar emitter signals based on SVD and AF main ridge slice’, J. Commun. Netw., 2015, 17, (5), pp. 491498.
    14. 14)
      • 14. Shieh, C.S., Lin, C.T.: ‘A vector neural network for emitter identification’, IEEE Trans. Antennas Propag., 2002, 50, (8), pp. 11201127.
    15. 15)
      • 15. Cheong, J.Y., Park, I.K.: ‘Deep CNN-based super-resolution using external and internal examples’, IEEE Signal Process. Lett., 2017, 24, (8), pp. 12521256.
    16. 16)
      • 16. Grassi, G., Grieco, L.A.: ‘Object-oriented image analysis using the CNN universal machine: new analogic CNN algorithms for motion compensation, image synthesis, and consistency observation’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2003, 50, (4), pp. 488499.
    17. 17)
      • 17. Yuan, Y., Mou, L., Lu, X.: ‘Scene recognition by manifold regularized deep learning architecture’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 26, (10), pp. 22222233.
    18. 18)
      • 18. Ali, A., Fan, Y.: ‘Automatic modulation classification using deep learning based on sparse autoencoders with nonnegativity constraints’, IEEE Signal Process. Lett., 2017, 24, (11), pp. 16261630.
    19. 19)
      • 19. Zhang, J., Li, Y., Yin, J.: ‘Modulation classification method for frequency modulation signals based on the time–frequency distribution and CNN’, IET Radar Sonar Navig., 2018, 12, (2), pp. 244249.
    20. 20)
      • 20. Zhang, D., Ding, W., Zhang, B., et al: ‘Automatic modulation classification based on deep learning for unmanned aerial vehicles’, Sensors, 2018, 18, (3), p. 924.
    21. 21)
      • 21. Ali, A., Fan, Y.: ‘k-sparse autoencoder-based automatic modulation classification with low complexity’, IEEE Commun. Lett., 2017, 21, (10), pp. 21622165.
    22. 22)
      • 22. Lu, W.K., Zhang, Q.: ‘Deconvolutive short-time Fourier transform spectrogram’, IEEE Signal Process. Lett., 2009, 16, (7), pp. 576579.
    23. 23)
      • 23. Liu, D.X., Zhao, G.Q.: ‘Analysis of pulse modulation signals’, Mod. Rad., 2003, 25, (11), pp. 1720.
    24. 24)
      • 24. Feng, W., Shanshan, H.: ‘Automatic modulation classification exploiting hybrid machine learning network’, Math. Probl. Eng., 2018, 2018, (4), pp. 114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5549
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5549
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address