http://iet.metastore.ingenta.com
1887

Least-squares collocation modelling of regional ionospheric TEC for accelerating real-time single-frequency PPP convergence

Least-squares collocation modelling of regional ionospheric TEC for accelerating real-time single-frequency PPP convergence

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Modelling of the regional ionospheric total electron content (TEC) is an important means for mitigating the ionospheric delay errors in the single-frequency (SF) precise point positioning (PPP). Mostly, the existing regional ionospheric models (RIM) only takes the trend term of the ionospheric TEC variations into account and neglect their random variable part. As a result, the TEC's irregular variations cannot be well modelled. In this study, a regional ionospheric TEC model based on the least-squares collocation (LSC) approach is proposed to account for both the trend and random parts. The predicted TEC from the LSC RIM is then employed in the real-time (RT) SF PPP for speeding up convergence. Datasets collected in two different latitude regions are utilised to establish the LSC RIM with a comparison to the conventional polynomial model and the global ionosphere map (GIM)-predicted products. The results show that the LSC model can remove ionospheric delay errors of at least 92%, which is larger than the polynomial model and GIM products. Further, the GPS RT SF PPP after introducing the predicted TEC from the LSC RIM can significantly reduce the convergence time by at least 48%, 58%, and 5% in the east, north, and up directions.

References

    1. 1)
      • 1. Klobuchar, J.A.: ‘Ionospheric time-delay algorithm for single-frequency GPS users’, IEEE trans. Aerosp. Electron. Syst., 1987, AES- 23, (3), pp. 325332.
    2. 2)
      • 2. Bilitza, D.: ‘International reference ionosphere: recent developments’, Radio Sci.., 1986, 21, pp. 343346.
    3. 3)
      • 3. Radicella, S.M., Leitinger, R.: ‘The evolution of the DGR approach to model electron density profiles’, Adv. Space Res., 2001, 27, (1), pp. 3540.
    4. 4)
      • 4. Radicella, S.M.: ‘The NeQuick model genesis, uses and evolution’, Ann. Geophys-Italy, 2009, 52, (3–4), pp. 417422.
    5. 5)
      • 5. Bree, R.J.P., Tiberius, C.C.J.M.: ‘Real-time single-frequency precise point positioning: accuracy assessment’, GPS Solut., 2012, 16, (2), pp. 259266.
    6. 6)
      • 6. Komjathy, A.: ‘Global ionospheric total electron content mapping using the global positioning system’. PhD thesis, University of New Brunswick, 1997.
    7. 7)
      • 7. Lanyi, G.E., Roth, T.: ‘A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations’, Radio Sci.., 1988, 23, (4), pp. 483492.
    8. 8)
      • 8. Liu, J., Chen, R., Wang, Z., et al: ‘Spherical cap harmonic model for mapping and predicting regional TEC’, GPS Solut., 2011, 15, (2), pp. 109119.
    9. 9)
      • 9. Tu, R., Zhang, H., Ge, M., et al: ‘A real-time ionospheric model based on GNSS precise point positioning’, Adv. Space Res., 2013, 52, (6), pp. 11251134.
    10. 10)
      • 10. Yuan, J.Y.O.U.: ‘A generalized trigonometric series function model for determining ionospheric delay’, Prog. Nat. Sci.: Mater. Int., 2004, 14, (11), pp. 10101014.
    11. 11)
      • 11. Li, Z., Yuan, Y., Li, H., et al: ‘Two-Step method for the determination of the differential code biases of COMPASS satellites’, J. Geod., 2012, 86, (11), pp. 10591076.
    12. 12)
      • 12. Xi, G., Zhu, F., Gan, Y., et al: ‘Research on the regional short-term ionospheric delay modeling and forecasting methodology for mid-latitude area’, GPS Solut., 2015, 19, (3), pp. 457465.
    13. 13)
      • 13. Wang, N., Yuan, Y., Li, Z., et al: ‘Determination of differential code biases with multi-GNSS observations’, J. Geod., 2016, 90, (3), pp. 120.
    14. 14)
      • 14. Shi, C., Fan, L., Li, M., et al: ‘An enhanced algorithm to estimate BDS satellite's differential code biases’, J. Geod., 2016, 90, (2), pp. 161177.
    15. 15)
      • 15. Schaer, S.: ‘Mapping and predicting the earth's ionosphere using the global positioning system’. PhD thesis, University of Berne, 1999.
    16. 16)
      • 16. Opperman, B.D.L., Cilliers, P.J., Mckinnell, L.A., et al: ‘Development of a regional GPS-based ionospheric TEC model for South Africa’, Adv. Space Res., 2007, 39, (5), pp. 808815.
    17. 17)
      • 17. Sharifi, M.A., Farzaneh, S.: ‘Regional TEC dynamic modeling based on slepian functions’, Adv. Space Res., 2015, 56, (5), pp. 907915.
    18. 18)
      • 18. Zhang, R., Song, W., Yao, Y., et al: ‘Modeling regional ionospheric delay with ground-based beidou and gps observations in China’, GPS Solut., 2015, 19, (4), pp. 649658.
    19. 19)
      • 19. Ratnam, D.V., Sarma, A.D.: ‘Modeling of low-latitude ionosphere using GPS data With SHF model’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (3), pp. 972980.
    20. 20)
      • 20. Wielgosz, P., Grejner-Brzezinska, D., Kashani, I.: ‘Regional ionosphere mapping with kriging and multiquadric methods’, Positioning, 2009, 2, (1), pp. 4855.
    21. 21)
      • 21. Amerian, Y., Hossainali, M.M., Voosoghi, B.: ‘Regional improvement of IRI extracted ionospheric electron density by compactly supported base functions using GPS observations’, J. Atmos. Sol-Terr. Phy., 2013, 92, (1), pp. 2330.
    22. 22)
      • 22. Hernández-Pajares, M., Juan, J.M., Sanz, J.: ‘Neural network modeling of the ionospheric electron content at global scale using GPS data’, Radio Sci.., 1997, 32, (3), pp. 10811089.
    23. 23)
      • 23. Habarulema, J.B., Mckinnell, L.A., Opperman, B.D.L.: ‘Regional GPS TEC modeling; attempted spatial and temporal extrapolation of TEC using neural networks’, J. Geophys. Res., 2011, 116, (A4), pp. 114.
    24. 24)
      • 24. Moritz, H.: ‘Least-squares collocation’, Rev. Geophys., 1978, 16, (3), pp. 421430.
    25. 25)
      • 25. Lin, H., Xiong, Y., Wang, X., et al: ‘isogeometric least-squares collocation method with consistency and convergence analysis’. arXiv preprint arXiv: 1601.07244, 2016.
    26. 26)
      • 26. Schwarz, K.P., Lachapelle, G.: ‘Local characteristics of the gravity anomaly covariance function’, Bull Géod, 1980, 54, (1), pp. 2136.
    27. 27)
      • 27. Dai, L., Han, S., Wang, J., et al: ‘Comparison of interpolation algorithms in network-based GPS technique’, J. Inst. Navig., 2003, 50, (4), pp. 277293.
    28. 28)
      • 28. Al-Shaery, A., Lim, S., Rizos, C.: ‘Investigation of different interpolation methods used in network-RTK for virtual reference station technique’, J. Glob. Positioning Syst., 2011, 10, (2), pp. 136148.
    29. 29)
      • 29. Krypiakgregorczyk, A., Wielgosz, P., Jarmołowski, W.: ‘A new TEC interpolation method based on the least squares collocation for high accuracy regional ionospheric maps’, Meas. Sci. Technol., 2017, 28, (4), p. 045801.
    30. 30)
      • 30. Mannucci, A.J., Wilson, B.D., Yuan, D.N., et al: ‘A global mapping technique for GPS-derived ionospheric total electron content measurements’, Radio Sci.., 1998, 33, (3), pp. 565582.
    31. 31)
      • 31. Darbeheshti, N., Featherstone, W.E.: ‘Non-stationary covariance function modelling in 2D least-squares collocation’, J. Geod., 2009, 83, (6), pp. 495508.
    32. 32)
      • 32. Jarmołowski, W.: ‘Least squares collocation with uncorrelated heterogeneous noise estimated by restricted maximum likelihood’, J. Geod., 2015, 89, (6), pp. 577589.
    33. 33)
      • 33. Elsobeiey, M., Al-Harbi, S.: ‘Performance of real-time precise point positioning using IGS real-time service’, GPS Solut., 2016, 20, (3), pp. 565571.
    34. 34)
      • 34. Kouba, J., Héroux, P.: ‘Precise point positioning using IGS orbit and clock products’, GPS Solut., 2001, 5, (2), pp. 1228.
    35. 35)
      • 35. Cai, C., Gong, Y., Yang, G., et al: ‘An approach to speed up single-frequency PPP convergence with quad-constellation GNSS and GIM’, Sensors, 2017, 17, (6), p. 1302.
    36. 36)
      • 36. Kouba, J., Héroux, P.: ‘Precise point positioning using IGS orbit and clock products’, GPS Solut., 2011, 5, (2), pp. 1228.
    37. 37)
      • 37. Zhang, H., Ping, J., Zhu, W., et al: ‘Brief review of the ionospheric delay models’, Prog. Astron., 2006, 24, (1), pp. 1626.
    38. 38)
      • 38. Schaer, S., Gurtner, W., Feltens, J.: ‘IONEX: The ionosphere Map EXchange format version 1’. Proc. of IGS Analysis Center Workshop, Darmstadt, Germany, February 9–11 1998.
    39. 39)
      • 39. Cai, C., Gao, Y.: ‘Modeling and assessment of combined GPS/GLONASS precise point positioning’, GPS Solut., 2013, 17, (2), pp. 223236.
    40. 40)
      • 40. Nie, Z., Gao, Y., Wang, Z., et al: ‘An approach to GPS clock prediction for real-time PPP during outages of RTS stream’, GPS Solut., 2018, 22, (1), pp. 114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5504
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5504
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address