Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Cognitive radar antenna selection via deep learning

Direction-of-arrival (DoA) estimation of targets improves with the number of elements employed by a phased array radar antenna. Since larger arrays have high associated cost, area and computational load, there is a recent interest in thinning the antenna arrays without loss of far-field DoA accuracy. In this context, a cognitive radar may deploy a full array and then select an optimal subarray to transmit and receive the signals in response to changes in the target environment. Prior works have used optimisation and greedy search methods to pick the best subarrays cognitively. In this study, deep learning is leveraged to address the antenna selection problem. Specifically, they construct a convolutional neural network (CNN) as a multi-class classification framework, where each class designates a different subarray. The proposed network determines a new array every time data is received by the radar, thereby making antenna selection a cognitive operation. Their numerical experiments show that the proposed CNN structure provides 22% better classification performance than a support vector machine and the resulting subarrays yield 72% more accurate DoA estimates than random array selections.

References

    1. 1)
      • 24. Tabrikian, J., Isaacs, O., Bilik, I.: ‘Cognitive antenna selection for DOA estimation in automotive radar’. IEEE Radar Conf., Philadelphia, PA, USA, 2016, pp. 15.
    2. 2)
      • 50. Nion, D., Sidiropoulos, N.D.: ‘Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar’, IEEE Trans. Signal Process., 2010, 58, (11), pp. 56935705.
    3. 3)
      • 33. Joshi, S., Boyd, S.: ‘Sensor selection via convex optimization’, IEEE Trans. Signal Process., 2009, 57, (2), pp. 451462.
    4. 4)
      • 26. Mateos-Núñez, D., González-Huici, M.A., Simoni, R., et al: ‘Adaptive channel selection for DOA estimation in MIMO radar’. Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Curacao, Netherlands Antilles, 2017, in press.
    5. 5)
      • 28. Nosrati, H., Aboutanios, E., Smith, D.B.: ‘Receiver–transmitter pair selection in MIMO phased array radar’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 2017, pp. 32063210.
    6. 6)
      • 13. Cohen, D., Eldar, Y.C.: ‘Sub-Nyquist radar systems: temporal, spectral and spatial compression’, IEEE Signal Process. Mag., 2018, 35, (6), pp. 3558.
    7. 7)
      • 25. Isaacs, O., Tabrikian, J., Bilik, I.: ‘Cognitive antenna selection for optimal source localization’. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico, 2015, pp. 341344.
    8. 8)
      • 5. Kilani, M.B., Nijsure, Y., Gagnon, G., et al: ‘Cognitive waveform and receiver selection mechanism for multistatic radar’, IET Radar Sonar Navig., 2016, 10, (2), pp. 417425.
    9. 9)
      • 59. Athley, F.: ‘Optimization of element positions for direction finding with sparse arrays’. Proc. 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No. 01TH8563), Singapore, August 2001, pp. 516519.
    10. 10)
      • 17. Duman, T.M., Ghrayeb, A.: ‘Antenna selection for MIMO systems’, in (Eds.): ‘Coding for MIMO communication systems’ (John Wiley & Sons, Oxford, UK, 2007), pp. 287315.
    11. 11)
      • 22. Rossi, M., Haimovich, A.M., Eldar, Y.C.: ‘Spatial compressive sensing for MIMO radar’, IEEE Trans. Signal Process., 2014, 62, (2), pp. 419430.
    12. 12)
      • 30. Zhai, X., Cai, Y., Shi, Q., et al: ‘Joint transceiver design with antenna selection for large-scale MU-MIMO mmWave systems’, IEEE J. Sel. Areas Commun., 2017, 35, (9), pp. 20852096.
    13. 13)
      • 42. Wang, C., Wang, J., Zhang, X.: ‘Automatic radar waveform recognition based on time–frequency analysis and convolutional neural network’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 2017, pp. 24372441.
    14. 14)
      • 18. Gershman, A., Böhme, J.F.: ‘A note on most favorable array geometries for DOA estimation and array interpolation’, IEEE Signal Process. Lett., 1997, 4, (8), pp. 232235.
    15. 15)
      • 8. Bell, K.L., Baker, C.J., Smith, G.E., et al: ‘Cognitive radar framework for target detection and tracking’, IEEE. J. Sel. Top. Signal Process., 2015, 9, (8), pp. 14271439.
    16. 16)
      • 29. Molisch, A.F., Ratnam, V.V., Han, S., et al: ‘Hybrid beamforming for massive MIMO: a survey’, IEEE Commun. Mag., 2017, 55, (9), pp. 134141.
    17. 17)
      • 57. Bishop, C.M.: ‘Pattern recognition and machine learning’ (Springer, New York, 2006).
    18. 18)
      • 44. Schwegmann, C.P., Kleynhans, W., Salmon, B.P., et al: ‘Very deep learning for ship discrimination in synthetic aperture radar imagery’. IEEE Int. Geoscience and Remote Sensing Symp., Beijing, China, 2016, pp. 104107.
    19. 19)
      • 56. Srivastava, N., Hinton, G., Krizhevsky, A., et al: ‘Dropout: a simple way to prevent neural networks from overfitting’, J. Mach. Learn. Res., 2014, 15, (1), pp. 19291958.
    20. 20)
      • 49. Liu, X., Sidiropoulos, N.D.: ‘On constant modulus multidimensional harmonic retrieval’. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Orlando, FL, USA, 2002, vol. 3, pp. III2977.
    21. 21)
      • 20. Pal, P., Vaidyanathan, P.P.: ‘Nested arrays: a novel approach to array processing with enhanced degrees of freedom’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 41674181.
    22. 22)
      • 11. Cohen, D., Mishra, K.V., Eldar, Y.C.: ‘Spectrum sharing radar: coexistence via Xampling’, IEEE Trans. Aerosp. Electron. Syst., 2018, 29, pp. 12791296.
    23. 23)
      • 15. Baylis, C., Fellows, M., Cohen, L., et al: ‘Solving the spectrum crisis: intelligent, reconfigurable microwave transmitter amplifiers for cognitive radar’, IEEE Microw. Mag., 2014, 15, (5), pp. 94107.
    24. 24)
      • 16. Lo, Y.: ‘A mathematical theory of antenna arrays with randomly spaced elements’, IEEE Trans. Antennas Propag., 1964, 12, (3), pp. 257268.
    25. 25)
      • 7. Mishra, K.V., Eldar, Y.C., Shoshan, E., et al: ‘A cognitive sub-Nyquist MIMO radar prototype’, arXiv preprint arXiv:1807.09126, 2018.
    26. 26)
      • 45. Jokanović, B., Amin, M.: ‘Fall detection using deep learning in range–Doppler radars’, IEEE Trans. Aerosp. Electron. Syst., 2018, 54, (1), pp. 180189.
    27. 27)
      • 35. Godrich, H., Petropulu, A.P., Poor, H.V.: ‘Sensor selection in distributed multiple-radar architectures for localization: a knapsack problem formulation’, IEEE Trans. Signal Process., 2012, 60, (1), pp. 247260.
    28. 28)
      • 27. Shulkind, G., Jegelka, S., Wornell, G.W.: ‘Multiple wavelength sensing array design’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 2017, pp. 34243428.
    29. 29)
      • 54. Ye, Z., Liu, C.: ‘2-D DOA estimation in the presence of mutual coupling’, IEEE Trans. Antennas Propag., 2008, 56, (10), pp. 31503158.
    30. 30)
      • 21. Mishra, K.V., Kahane, I., Kaufmann, A., et al: ‘High spatial resolution radar using thinned arrays’. IEEE Radar Conf., Seattle, WA, USA, 2017, pp. 11191124.
    31. 31)
      • 2. Guerci, J.R.: ‘Cognitive radar: a knowledge-aided fully adaptive approach’. IEEE Radar Conf., Washington, DC, USA, 2010, pp. 13651370.
    32. 32)
      • 14. Na, S., Mishra, K.V., Liu, Y., et al: ‘TenDSuR: tensor-based sub-Nyquist radar’, IEEE Signal Process. Lett., 2019, 26, (2), pp. 237241.
    33. 33)
      • 19. Pal, P., Vaidyanathan, P.P.: ‘Coprime sampling and the MUSIC algorithm’. Digital Signal Processing and Signal Processing Education Meeting, Sedona, AZ, USA, 2011, pp. 289294.
    34. 34)
      • 58. Dudgeon, D.E.: ‘Fundamentals of digital array processing’, Proc. IEEE, 1977, 65, pp. 898904.
    35. 35)
      • 31. Wang, Z., Vandendorpe, L.: ‘Antenna selection for energy efficient MISO systems’, IEEE Commun. Lett., 2017, 21, (12), pp. 27582761.
    36. 36)
      • 52. Stoica, P., Nehorai, A.: ‘MUSIC, maximum likelihood, and Cramér–Rao bound: further results and comparisons’, IEEE Trans. Acoust. Speech Signal Process., 1990, 38, (12), pp. 21402150.
    37. 37)
      • 37. Gao, Y., Hu, D., Chen, Y., et al: ‘Gridless 1-b DOA estimation exploiting SVM approach’, IEEE Commun. Lett., 2017, 21, (10), pp. 22102213.
    38. 38)
      • 38. Gonnouni, A.E., Martinez-Ramon, M., Rojo-Alvarez, J.L., et al: ‘A support vector machine MUSIC algorithm’, IEEE Trans. Antennas Propag., 2012, 60, (10), pp. 49014910.
    39. 39)
      • 55. Bilal, A., Jourabloo, A., Ye, M., et al: ‘Do convolutional neural networks learn class hierarchy?’, IEEE Trans. Vis. Comput. Graph., 2018, 24, pp. 152162.
    40. 40)
      • 1. Haykin, S.: ‘Cognitive radar: a way of the future’, IEEE Signal Process. Mag., 2006, 23, (1), pp. 3040.
    41. 41)
      • 23. Cohen, D., Cohen, D., Eldar, Y.C., et al: ‘SUMMer: sub-Nyquist MIMO radar’, IEEE Trans. Signal Process., 2018, 66, pp. 43154330.
    42. 42)
      • 48. Jiang, T., Sidiropoulos, N.D., ten Berge, J. .: ‘Almost-sure identifiability of multidimensional harmonic retrieval’, IEEE Trans. Signal Process., 2001, 49, (9), pp. 18491859.
    43. 43)
      • 36. Metcalf, J., Blunt, S.D., Himed, B.: ‘A machine learning approach to cognitive radar detection’. IEEE Radar Conf., Arlington, VA, USA, 2015, pp. 14051411.
    44. 44)
      • 39. Joung, J.: ‘Machine learning-based antenna selection in wireless communications’, IEEE Commun. Lett., 2016, 20, (11), pp. 22412244.
    45. 45)
      • 9. Goodman, N.A., Venkata, P.R., Neifeld, M.A.: ‘Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors’, IEEE. J. Sel. Top. Signal Process., 2007, 1, (1), pp. 105113.
    46. 46)
      • 4. Chen, P., Wu, L.: ‘Waveform design for multiple extended targets in temporally correlated cognitive radar system’, IET Radar Sonar Navig., 2016, 10, (2), pp. 398410.
    47. 47)
      • 3. Smith, G.E., Cammenga, Z., Mitchell, A., et al: ‘Experiments with cognitive radar’, IEEE Aerosp. Electron. Syst. Mag., 2016, 31, (12), pp. 3446.
    48. 48)
      • 46. Mishra, K.V., Gharanjik, A., Shankar, M.R.B., et al: ‘Deep learning framework for precipitation retrievals from communication satellites’. European Conf. Radar in Meteorology & Hydrology, Ede, Wageningen, Netherlands, 2018.
    49. 49)
      • 32. Demir, O.T., Tuncer, T.E.: ‘Antenna selection and hybrid beamforming for simultaneous wireless information and power transfer in multi-group multicasting systems’, IEEE Trans. Wirel. Commun., 2016, 15, (10), pp. 69486962.
    50. 50)
      • 43. Mason, E., Yonel, B., Yazici, B.: ‘Deep learning for radar’. IEEE Radar Conf., Seattle, WA, USA, 2017, pp. 17031708.
    51. 51)
      • 53. Friedlander, B., Weiss, A.: ‘Direction finding in the presence of mutual coupling’, IEEE Trans. Antennas Propag., 1991, 39, (3), pp. 273284.
    52. 52)
      • 34. Roy, V., Chepuri, S.P., Leus, G.: ‘Sparsity-enforcing sensor selection for DOA estimation’. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, St. Martin, France, 2013, pp. 340343.
    53. 53)
      • 12. Mishra, K.V., Eldar, Y.C.: ‘Sub-Nyquist radar: principles and prototypes’, arXiv preprint arXiv:1803.01819, 2018.
    54. 54)
      • 10. Stinco, P., Greco, M. S., Gini, F.: ‘Spectrum sensing and sharing for cognitive radars’, IET Radar Sonar Navig., 2016, 10, (3), pp. 595602.
    55. 55)
      • 41. Bengio, Y., Courville, A., Vincent, P.: ‘Representation learning: a review and new perspectives’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (8), pp. 17981828.
    56. 56)
      • 6. Mishra, K.V., Eldar, Y.C.: ‘Performance of time delay estimation in a cognitive radar’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 2017, pp. 31413145.
    57. 57)
      • 51. Ben-Haim, Z., Eldar, Y.C.: ‘A lower bound on the Bayesian MSE based on the optimal bias function’, IEEE Trans. Inf. Theory, 2009, 55, (11), pp. 51795196.
    58. 58)
      • 47. Renaux, A., Forster, P., Larzabal, P., et al: ‘A fresh look at the Bayesian bounds of the Weiss–Weinstein family’, IEEE Trans. Signal Process., 2008, 56, (11), pp. 53345352.
    59. 59)
      • 40. Lecun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, (7553), pp. 436444.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5438
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5438
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address