Jamming: The probable menace to NavIC

Jamming: The probable menace to NavIC

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The impact of class-II jammer on NavIC receiver in L5 band is presented here. To understand the probable hazards of jammer, five cases cum observational studies are reconnoitred using different statistical time and frequency domain approaches. Interestingly, it is noticed that the Carrier-to-Noise Density Ratio (C/N 0) tends to zero when jamming scenario exist for a longer duration. The effect on NavIC is observed more for the static jammer than the dynamic jammer. The comparisons of correlation for different cases also validate the impact of jammer. The impact of jamming is also identified by different descriptive statistical parameters of the signals like mean, variance, standard deviation, and skewness. Among these statistical analyses, values of mean provide better observation.


    1. 1)
      • 1. ISRO: ‘Indian regional navigation satellite system (IRNSS): signal in space ICD for standard positioning service’, version 1.0. ISRO Satellite Centre, June2014, pp. 110.
    2. 2)
      • 2. Craven, P., Wong, R., Fedora, N., et al: ‘Studying the effects of interference on GNSS signals’. Proc. ION ITM, San Diego, California, 2013, pp. 893900.
    3. 3)
      • 3. Coffed, J.: ‘The threat of GPS jamming: the risk to an information utility’, Report of EXELIS, Jan2014, pp. 610.
    4. 4)
      • 4. Pullen, S., Gao, G.X.: ‘GNSS jamming in the name of privacy-potential threat to GPS aviation’, Inside GNSS, 2012, 7, (2), pp. 3443.
    5. 5)
      • 5. Borio, D., O'Driscoll, C., Fortuny, J.: ‘GNSS jammers: effects and countermeasures’. Satellite Navigation Tech. and European Workshop on GNSS Signals and Signal Processing, (NAVITEC-IEEE), December 2012, pp. 17.
    6. 6)
      • 6. Grant, A., Williams, P., Ward, N., et al: ‘GPS jamming and the impact on maritime navigation’, J. Navig.2009, 62, (2), pp. 173187.
    7. 7)
      • 7. Santra, A., Mahato, S., Mandal, S., et al: ‘Augmentation of GNSS utility by IRNSS/NavIC constellation over the Indian region’. Adv. Space Res., 2018, 2018, pp. 110.
    8. 8)
      • 8. ISRO: ‘IRNSS: signal in space ICD for standard positioning service’, version 1.1. ISRO Satellite Centre, August2017, pp. 110.
    9. 9)
      • 9. Mitch, R.H., Dougherty, R.C., Psiaki, M.L., et al: ‘Signal characteristics of civil GPS jammers’. Proc. Radio navigation Laboratory Conf., ION GNSS, 2011, pp. 212.
    10. 10)
      • 10. Borio, D., O'Driscoll, C., Fortuny, J.: ‘Jammer impact on Galileo and GPS receivers’. Proc. Int. Conf. Localization and GNSS (ICL-GNSS-IEEE), June 2013, pp. 16.
    11. 11)
      • 11. Lineswala, P.L., Shah, S.N.: ‘Designing of SDR based Malicious Act: IRNSS jammer’, in Patel, Z., Gupta, S. (Eds.): ‘Future internet technologies and trends’ (Springer, Surat, India, 2018), pp. 237246.
    12. 12)
      • 12. Bauernfeind, R., Eissfeller, B.: ‘Software-defined radio based roadside jammer detector: architecture and results’. Proc. Position, Location and Navigation Symp. (PLANS-IEEE/ION), May 2014, pp. 12931300.
    13. 13)
      • 13. Borio, D., Gioia, C., Dimc, F., et al: ‘An experimental evaluation of the GNSS jamming threat’. Proc. 24th Electro technical and Computer Conf. (ERK), September 2015, pp. 269272.
    14. 14)
      • 14. Borio, D., Dovis, F., Kuusniemi, H., et al: ‘Impact and detection of GNSS jammers on consumer grade satellite navigation receivers’. Proc. IEEE Conf., 2016, vol. 104, no, 6, pp. 12331245.
    15. 15)
      • 15. Dimc, F., Bažec, M., Borio, D., et al: ‘An experimental evaluation of low-cost GNSS jamming sensors’, Navig., J. Inst. Navig., 2017, 64, (1), pp. 93109.
    16. 16)
      • 16. Gao, G.X., Gunning, K., Walter, T., et al: ‘Impact of personal privacy devices for WAAS aviation users’. Proc. 25th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS), September 2012, pp. 235241.
    17. 17)
      • 17. Axell, E., Eklöf, F.M., Johansson, P., et al: ‘Jamming detection in GNSS receivers: performance evaluation of field trials’, Navig., J. Inst. Navig., 2015, 62, (1), pp. 7382.
    18. 18)
      • 18. Bhuiyan, M.Z.H., Kuusniemi, H., Söderholm, S., et al: ‘The impact of interference on GNSS receiver observables – a running digital sum based simple jammer detector’, Radio Eng., 2014, 23, (3), pp. 898906.
    19. 19)
      • 19. Duhamel, P., Vetterli, M.: ‘Fast Fourier transforms: a tutorial review and a state of the art’, Signal Process., 1990, 19, (4), pp. 259299.
    20. 20)
      • 20. Moussa, M.M., Osman, A., Tamazin, M., et al: ‘Enhanced GPS narrowband jamming detection using high-resolution spectral estimation’, GPS Solut., 2017, 21, (2), pp. 475485.
    21. 21)
      • 21. Wang, P., Cetin, E., Dempster, A.G., et al: ‘Time frequency and statistical inference based interference detection technique for GNSS receivers’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (6), pp. 28652876.

Related content

This is a required field
Please enter a valid email address