access icon free Combined root-MUSIC algorithms for multi-carrier MIMO radar with sparse uniform linear arrays

In this study, sparse uniform linear arrays are used to improve the direction-of-arrival (DOA) estimation accuracy for the multiple-input multiple-output radar. With a suitable choice of multi-carrier frequencies, the DOA estimation ambiguity problem caused by spatial under-sampling can be resolved. Two kinds of search-free DOA estimation algorithms based on root-multiple signal classification (MUSIC) are proposed. The first algorithm directly applies the root-MUSIC to each carrier frequency separately for the true DOAs as well as their spurious DOAs, then, a novel DOA replicas matching algorithm is proposed to obtain the true DOAs from the ambiguous ones. The second algorithm utilises the manifold separation technique (MST) to align the noise subspaces of all multi-carrier frequencies. Using the MST, the separable representation of the array manifold vector of each carrier frequency is obtained, then the root-MUSIC polynomials of all multi-carrier frequencies are combined to construct a new polynomial, the true DOAs can be obtained directly by applying polynomial rooting without any matching processing. The two proposed algorithms are both practical, computationally efficient and robust. Numerical simulations verify the effectiveness of the proposed algorithms in terms of root-mean-squared error.

Inspec keywords: MIMO radar; polynomials; direction-of-arrival estimation; array signal processing; signal classification

Other keywords: array manifold vector; root-multiple signal classification; spurious DOAs; search-free DOA estimation algorithms; sparse uniform linear arrays; polynomial rooting; combined root-MUSIC algorithms; multiple-input multiple-output radar; DOA estimation ambiguity problem; carrier frequency; root-mean-squared error; multicarrier MIMO radar; novel DOA; manifold separation technique; root-MUSIC polynomials; direction-of-arrival estimation accuracy; multicarrier frequencies

Subjects: Signal processing theory; Interpolation and function approximation (numerical analysis); Algebra; Signal processing and detection

References

    1. 1)
      • 16. Bresler, Y., Macovski, A.: ‘Exact maximum-likelihood parameter-estimation of superimposed exponential signals in noise’, IEEE Trans. Acoust. Speech Signal Process., 1986, 34, (5), pp. 10811089.
    2. 2)
      • 21. Belloni, F., Richter, A., Koivunen, V.: ‘Doa estimation via manifold separation for arbitrary array structures’, IEEE Trans. Signal Process., 2007, 55, (10), pp. 48004810.
    3. 3)
      • 5. Qin, G.D., Chen, B.X., Chen, D.F.: ‘Impulse and aperture synthesis in multi-carrier-frequency MIMO radar’. 2009 IET Int. Radar Conf., Guilin, China, April 2009, pp. 14.
    4. 4)
      • 3. Fickenscher, T., Gupta, A.: ‘Element-space spatially waveform diverse FMCW radar distributed on naval formation’. Microwave Conf. (GeMIC), German, March 2011, pp. 14.
    5. 5)
      • 17. El Kassis, C., Picheral, J., Mokbel, C.: ‘Advantages of nonuniform arrays using root-MUSIC’, Signal Process., 2010, 90, (2), pp. 689695.
    6. 6)
      • 30. Manikas, A., Proukakis, C., Lefkaditis, V.: ‘Investigative study of planar array ambiguities based on ‘hyperhelical’ parameterization’, IEEE Trans. Signal Process., 1999, 47, (6), pp. 15321541.
    7. 7)
      • 7. Chen, D., Chen, B., Zhang, S.: ‘Multiple-input multiple-output radar and sparse array synthetic impulse and aperture radar’. 2006 CIE Int. Conf. on Radar, Shanghai, China, October 2006, pp. 14.
    8. 8)
      • 24. Bin, L., Shing Chow, C.: ‘Direction finding with partly calibrated uniform linear arrays’, IEEE Trans. Antennas Propag., 2012, 60, (2), pp. 922929.
    9. 9)
      • 1. Ulrich, M., Yang, B.: ‘Multi-carrier MIMO radar: a concept of sparse array for improved DOA estimation’. 2016 IEEE Radar Conf., Philadelphia, American, May 2016, pp. 17871807.
    10. 10)
      • 15. Roy, R., Kailath, T.: ‘ESPRIT – estimation of signal parameters via rotational invariance techniques’, IEEE Trans. Acoust. Speech Signal Process., 1989, 37, (7), pp. 984995.
    11. 11)
      • 2. Tang, Z., Blacquiere, G., Leus, G.: ‘Aliasing-free wideband beamforming using sparse signal representation’, Circuits Syst. Signal Process., 2011, 59, (7), pp. 34643469.
    12. 12)
      • 32. Weiss, A.J., Friedlander, B.: ‘On the Cramer-Rao bound for direction finding of correlated signals’, IEEE Trans. Signal Process., 1993, 41, (1), pp. 495499.
    13. 13)
      • 4. Yang, Q., Liu, A.: ‘Beamforming technique based on nonuniform signal recovering algorithm in multi-carrier frequency MIMO HF radar’. 2014 IEEE Radar Conf., Cincinnati, American, May 2014, pp. 945949.
    14. 14)
      • 10. Wang, H., Kaveh, M.: ‘Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources’, IEEE Trans. Acoust. Speech Signal Process., 1985, 33, (4), pp. 823831.
    15. 15)
      • 31. Stoica, P., Nehorai, A.: ‘Performance study of conditional and unconditional direction-of-arrival estimation’, IEEE Trans. Acoust. Speech Signal Process., 1990, 38, (10), pp. 17831795.
    16. 16)
      • 26. Aifei, L., Guisheng, L., Cao, Z., et al: ‘An eigenstructure method for estimating DOA and sensor gain-phase errors’, IEEE Trans. Signal Process., 2011, 59, (12), pp. 59445956.
    17. 17)
      • 12. Friedlander, B.: ‘The root-MUSIC algorithm for direction finding with interpolated arrays’, Signal Process., 1993, 30, (1), pp. 1529.
    18. 18)
      • 14. Stoica, P., Sharman, K.C.: ‘Maximum likelihood methods for direction-of-arrival estimation’, IEEE Trans. Acoust. Speech Signal Process., 1990, 38, (7), pp. 11321143.
    19. 19)
      • 6. Chen, B., Yang, M., Wang, Y., et al: ‘The applications and future of synthetic impulse and aperture radar’. 2016 CIE Int. Conf. on Radar (RADAR), Guangzhou, China, October 2016, pp. 15.
    20. 20)
      • 11. Liu, Z.-M.: ‘Direction-of-arrival estimation with time-varying arrays via Bayesian multitask learning’, IEEE Trans. Veh. Technol., 2014, 63, (8), pp. 56955702.
    21. 21)
      • 25. Bin, L., Shing Chow, C.: ‘Direction finding in partly calibrated uniform linear arrays with unknown gains and phases’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (1), pp. 217227.
    22. 22)
      • 22. Rubsamen, M., Gershman, A.B.: ‘Direction-of-arrival estimation for nonuniform sensor arrays: from manifold separation to Fourier domain MUSIC methods’, IEEE Trans. Signal Process., 2009, 57, (2), pp. 588599.
    23. 23)
      • 23. Zhuang, J., Li, W., Manikas, A.: ‘Fast root-MUSIC for arbitrary arrays’, Electron. Lett., 2010, 46, (2), pp. 174175.
    24. 24)
      • 8. Liu, A., Yang, Q., Deng, W.: ‘DOA estimation with compressing sensing based array interpolation technique in multi-carrier frequency MIMO HFSWR’. 2017 IEEE Radar Conf., Seattle, American, May 2017, pp. 581585.
    25. 25)
      • 19. Pakrooh, P., Scharf, L.L., Pezeshki, A.: ‘Modal analysis using co-prime arrays’, IEEE Trans. Signal Process., 2016, 64, (9), pp. 24292442.
    26. 26)
      • 9. Amin, M.G.: ‘Sufficient conditions for alias-free direction-of-arrival estimation in periodic spatial spectra’, IEEE Trans. Antennas Propag., 1993, 41, (4), pp. 508511.
    27. 27)
      • 18. Weng, Z., Djurić, P.M.: ‘A search-free DOA estimation algorithm for coprime arrays’, Digit. Signal Process., 2014, 24, pp. 2733.
    28. 28)
      • 28. Doron, M.A., Doron, E.: ‘Wave-field modeling and array-processing.1. Spatial sampling’, IEEE Trans. Signal Process., 1994, 42, (10), pp. 25492559.
    29. 29)
      • 29. Manikas, A., Proukakis, C.: ‘Modeling and estimation of ambiguities in linear arrays’, IEEE Trans. Signal Process., 1998, 46, (8), pp. 21662179.
    30. 30)
      • 20. Belloni, F., Richter, A., Koivunen, V.: ‘Extension of root-MUSIC to non-ULA array configurations’. 2006 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. IV, Processing: Signal Processing for Communication, Sensor Array and Multichannel Signal Processing, Toulouse, France, May 2006, pp. 897900.
    31. 31)
      • 27. Chen, B., Wu, J.: ‘Synthetic impulse and aperture radar (SIAR): a novel multi-frequency MIMO radar’ (Wiley Press, Singapore, 2014).
    32. 32)
      • 13. Rao, B.D., Hari, K.V.S.: ‘Performance analysis of root-music’, IEEE Trans. Acoust. Speech Signal Process., 1989, 37, (12), pp. 19391949.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5207
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5207
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading