access icon free Marginal tracking algorithm for hypersonic reentry gliding vehicle

Here, the trajectory of hypersonic reentry gliding vehicle is tracked in the East–North–Up (ENU) coordinate system (CS) using a novel marginal tracking algorithm. Firstly, the trajectories are compared and analysed through numerical simulation. The authors try to establish the manoeuvring models based on flight path angle and heading angle. However, they are all invisible in the ENU CS. Fortunately, inclination angle and azimuth angle can be utilised to replace them. Secondly, the trajectory is projected onto the longitudinal and horizontal observation planes and is tracked synchronously in them. The three-dimensional tracking is achieved through measurement data preprocessing, marginal filtering, and state merging. Finally, the parameters of manoeuvring models in two observation planes are set. Simulation shows that the algorithm has a good robustness and high tracking precision.

Inspec keywords: missile control; trajectory control; numerical analysis; aircraft control

Other keywords: heading angle; manoeuvring models; numerical simulation; novel marginal tracking algorithm; inclination angle; azimuth angle; East-North-Up coordinate system; three-dimensional tracking; horizontal observation plane; marginal filtering; longitudinal observation plane; measurement data preprocessing; state merging; hypersonic reentry gliding vehicle; ENU CS; flight path angle

Subjects: Aerospace control; Other numerical methods; Spatial variables control

References

    1. 1)
      • 4. Xie, Y., Liu, L.H., Tang, G.J., et al: ‘Weaving maneuver trajectory design for hypersonic glide vehicles’, Acta Aeronaut. Astronaut. Sin., 2011, 32, (12), pp. 21742181.
    2. 2)
      • 19. Li X, R., Jilkov V, P.: ‘A survey of maneuvering target tracking – Part III: measurement models’, Proc. SPIE Conf. Signal Data Process. Small Targets, 2001, 4473, pp. 423446.
    3. 3)
      • 18. Li X, R., Jilkov V, P.: ‘A survey of maneuvering target tracking. Part II: ballistic target models’, Proc. SPIE Conf. Signal Data Process. Small Targets, 2001, 4473, pp. 559581.
    4. 4)
      • 13. Bordonaro, S., Willett, P., Bar-Shalom, Y.: ‘Decorrelated unbiased converted measurement Kalman filter’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (2), pp. 14311444.
    5. 5)
      • 9. Mohammaddadi, G, Parize, N, Karimpour, A: ‘Modal Kalman filter’, Asian J. Control, 2017, 19, (2), pp. 728738.
    6. 6)
      • 23. Li, H.N., Lei, H.M., Zhai, D.L., et al: ‘Tracking oriented dynamics modeling of airbreathing hypersonic vehicles’, Acta Aeronaut. Astronaut. Sin., 2014, 35, (6), pp. 16511664.
    7. 7)
      • 6. Li, G.H., Zhang, H.B., Tang, G.J.: ‘Flight corridor analysis for hypersonic glide vehicles’, J. Aerosp. Eng., 2017, 30, (1), pp. 17, doi: 10.1061/(ASCE)AS.1943-5525.0000667.
    8. 8)
      • 5. Li, G.H., Zhang, H.B., Tang, G.J.: ‘Maneuver characteristics analysis for hypersonic glide vehicles’, Aerosp. Sci. Technol., 2015, 43, pp. 321328.
    9. 9)
      • 3. Li, H.F.: ‘Hypersonic vehicles guidance and control technology’ (China Aerospace Press, Beijing, 2012), p. 10.
    10. 10)
      • 25. Zhang, X.Y., Wang, G.H., Zhang, J., et al: ‘Tracking of hypersonic boost-to-glide trajectory target in near-space’, J. Astronaut., 2015, 36, (10), pp. 11251132.
    11. 11)
      • 8. Ghoreyshi, A., Sanger, T.D.: ‘A nonlinear stochastic filter for continuous-time state estimation’, IEEE Trans. Autom. Control, 2015, 60, (8), pp. 21612165.
    12. 12)
      • 15. Lan, J., Li X, R., Jilkov V, P.: ‘Second-order Markov chain based multiple-model algorithm for maneuvering target tracking’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (1), pp. 319.
    13. 13)
      • 2. Ann, R.: ‘First test flight successful for advanced hypersonic weapon vehicle’, Defense Daily, 2011, 252, (34), p. 10.
    14. 14)
      • 11. Jia, B., Xin, M., Cheng, Y.: ‘High-degree cubature Kalman filter’, Automatica, 2013, 49, (2), pp. 510518.
    15. 15)
      • 10. Julier S, J., Uhlmann J, K.: ‘Unscented filtering and nonlinear estimation’, Proc. IEEE, 2004, 92, (3), pp. 401422.
    16. 16)
      • 12. Lerro, D., Bar-Shalom, Y.: ‘Tracking with debiased consistent converted measurements versus EKF’, IEEE Trans. Aerosp. Electron. Syst., 1993, 29, (3), pp. 10151022.
    17. 17)
      • 28. Huang, J.S., Zhang, H.B., Li, G.H.: ‘Design and realization of terminal guidance law for passive homing interceptors’. The 27th Chinese Control and Decision Conf., Qingdao, 23–25 May 2015.
    18. 18)
      • 24. Wang, G.H., Li, J.J., Zhang, X.Y., et al: ‘A tracking model for near space hypersonic slippage leap maneuvering target’, Acta Aeronaut. Astronaut. Sin., 2015, 36, (7), pp. 24002410.
    19. 19)
      • 17. Li X, R., Jilkov V, P.: ‘Survey of maneuver target tracking. Part I: dynamic models’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (4), pp. 13331364.
    20. 20)
      • 27. Zhang, K., Chen, W.: ‘Reentry vehicle constrained trajectory optimization’. 17th AIAA Int. Space Planes and Hypersonic Systems and Technologies Conf., AIAA, San Francisco, California, 2011.
    21. 21)
      • 21. Duan, Z., Li, X.R.: ‘Constrained target motion modeling – part II: circular track’. IEEE Int. Conf. Information Fusion, Istanbul, Turkey, 2013, pp. 21532160.
    22. 22)
      • 1. Li, J.L.: ‘Research on development of near space hypersonic vehicle’ (China Aerospace Press, Beijing, 2012), p. 5.
    23. 23)
      • 14. Lan, J., Li X, R.: ‘Nonlinear estimation by IMMSE-based estimation with optimized uncorrelated augmentation’, IEEE Trans. Signal Process, 2015, 63, (16), pp. 42704283.
    24. 24)
      • 26. Zhang, X.Y., Wang, G.H., Li, J.J., et al: ‘Tracking of hypersonic sliding target in near-space’, Acta Aeronaut. Astronaut.Sin.2015, 36, (6), pp. 19831994.
    25. 25)
      • 7. Li, T.C., Su, J.Y., Liu, W., et al: ‘Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimode, uncertainty, and constraint, and beyond’, Front. Inf. Technol. Electron. Eng., 2017, 18, (12), pp. 19131939.
    26. 26)
      • 22. Olivier, D.M., Robert, H.B.: ‘Tracking and identification of a maneuvering reentry vehicle’. AIAA Guidance, Navigation, and Control Conf. Exhibit, Austin, Texas, USA, 2003.
    27. 27)
      • 20. Duan, Z., Li, X.R.: ‘Modeling of target motion constrained on straight line’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (2), pp. 548562.
    28. 28)
      • 16. Lan, J., Li X, R.: ‘Multiple conversions of measurements for nonlinear estimation’, IEEE Trans. Signal Process, 2017, 65, (18), pp. 49564970.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5192
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5192
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading