access icon free RPM and Doppler-based multi-path exploitation method for UWB TWR

Through-the-wall radar (TWR) with ultra-wideband (UWB) signals is a promising technology for three-dimensional monitoring systems used for rescue and security applications. To develop a suitable imaging algorithm to deal with UWB radar data, the range points migration (RPM) method was enhanced for the TWR observation model. However, there are some problems in the actual application because multiple reflection signals from the walls or targets produce a ghost image. This research extends the RPM-based TWR imaging method to convert a ghost image to an accurate one by exploiting the double-bounced signals discriminated by the Doppler velocity. Such discrimination can be achieved by prior estimations for the motion and location of the target provided by the Doppler-associated RPM algorithm. The finite-difference time-domain-based numerical simulation, with the assumption of multiple surrounding walls, demonstrated that the authors proposed method produced an accurate object by converting a ghost image to an actual image.

Inspec keywords: finite difference time-domain analysis; radar imaging; remote sensing by radar; ultra wideband radar

Other keywords: UWB radar data; (RPM) method; actual image; three-dimensional monitoring systems; ghost image; through-the-wall radar; ultra-wideband signals; TWR observation model; multiple reflection signals; RPM-based TWR imaging method; Doppler-associated RPM algorithm; finite-difference time-domain-based numerical simulation; range points; rescue; multiple surrounding walls; actual application; Doppler velocity; suitable imaging algorithm; security applications; UWB TWR; targets

Subjects: Radar equipment, systems and applications; Computer vision and image processing techniques; Optical, image and video signal processing

References

    1. 1)
      • 4. Dang, V., Kilic, O.: ‘Simulation framework for compressive sensing-based through-wall detection of moving targets’, IET Radar Sonar Navig., 2017, 11, (9), pp. 13491358.
    2. 2)
      • 20. Gonzalez, R.C., Wintz, P.A.: ‘Digital image processing reading’ (Addison-Wesley Publishing, MA, 1987, 2nd edn.).
    3. 3)
      • 7. Setlur, P., Alli, G., Nuzzo, L.: ‘Multipath exploitation in through-wall radar imaging via point spread functions’, IEEE Trans. Image Process., 2013, 22, (12), pp. 45714586.
    4. 4)
      • 11. Salman, R., Willms, I.: ‘3D UWB radar super-resolution imaging for complex objects with discontinuous wavefronts’. IEEE Int. Conf. Ultra-Wideband (ICUWB), Bologna, Italy, 2011.
    5. 5)
      • 24. Akune, K., Kidera, S., Kirimoto, T.: ‘Accurate and nonparametric imaging algorithm for targets buried in dielectric medium for UWB radars’, IEICE Trans. Electron., 2012, E95-C, (8), pp. 13891398.
    6. 6)
      • 15. Liu, J., Cui, G., Jia, Y.: ‘Sidewall detection using multipath in through-wall radar moving target tracking’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (6), pp. 13721376.
    7. 7)
      • 22. Aiello, R., Batra, A.: ‘Ultra wideband systems, technologies and applications’ (Newnes Publication, Oxford, Boston, 2006), pp. 1752.
    8. 8)
      • 2. Dubroca, R., Fortino, N., Dauvignac, J.-Y., et al: ‘Time reversal-based processing for human targets detection in realistic through-the-wall scenarios’. European Radar Conf. (EuRAD), Manchester, UK, 2011.
    9. 9)
      • 10. Fayazi, S.S., Yang, J., Lui, H-S.: ‘UWB SAR imaging of near-field object for industrial process applications’. European Conf. Antennas Propagation (EuCAP), Gothenburg, Sweden, 2013.
    10. 10)
      • 18. Kidera, S., Kirimoto, T.: ‘Fast and shadow region 3-dimensional imaging algorithm with range derivative of doubly scattered signals for UWB radars’, IEEE Trans. Antennas Propag., 2012, 60, (2), pp. 984996.
    11. 11)
      • 14. Leigsnering, M., Amin, M.G., Ahmad, F., et al: ‘Compressive sensing-based multipath exploitation for stationary and moving indoor target localization’, IEEE J. Sel. Top. Signal Process, 2015, 9, (8), pp. 14691483.
    12. 12)
      • 21. Yamaguchi, R., Kidera, S., Kirimoto, T.: ‘Accurate imaging method for moving target with arbitrary shape for multi-static UWB radar’, IEICE Trans. Commun., 2013, E96-B, (7), pp. 20142023.
    13. 13)
      • 23. Friederich, B., Schultze, T., Willms, I.: ‘UWB-radar based surface permittivity estimation in hostile and pathless security scenarios’. Proc. IEEE ICUWB 2014, Paris, France, 1–3 September 2014, pp. 125128.
    14. 14)
      • 19. Kessel, R.: ‘Wiener filter estimation of transfer functions’, J. Exp. Anal. Behav., 2004, 81, (3), pp. 289296.
    15. 15)
      • 3. Li, J., Cai, H., Chen, J., et al: ‘Datum correction based on wave equation inversion in time for UWB through-the-wall radar’, IET Radar Sonar Navig., 2017, 11, (7), pp. 11161123.
    16. 16)
      • 25. Setsu, M., Kidera, S.: ‘Super-resolution Doppler velocity estimation by Gaussian-kernel based range–Doppler conversion for UWB radar’. Progress in Electromagnetics Research Symp., Singapore, Singapore, 2017, pp. 13061311.
    17. 17)
      • 12. Kidera, S., Gao, C., Taniguchi, T., et al: ‘Ellipse based image extrapolation method with RPM imaging for through-the-wall UWB radar’. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Milan, Italy, 2015.
    18. 18)
      • 8. Leigsnering, M., Ahmad, F., Amin, M.G., et al: ‘Parametric dictionary learning for sparsity-based TWRI in multipath environments’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (2), pp. 532547.
    19. 19)
      • 5. Chen, X., Chen, W.: ‘Multipath ghost elimination for through-wall radar imaging’, IET Radar Sonar Navig., 2016, 10, (2), pp. 299310.
    20. 20)
      • 17. Kidera, S., Sakamoto, T., Sato, T.: ‘Extended imaging algorithm based on aperture synthesis with double-scattered waves for UWB radars’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (12), pp. 51285139.
    21. 21)
      • 16. Gennarelli, G., Soldovieri, F.: ‘Radar imaging through cinderblock walls: achievable performance by a model-corrected linear inverse scattering approach’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (10), pp. 37496738.
    22. 22)
      • 1. Wang, G., Amin, M.G.: ‘Imaging through unknown walls using different standoff distances’, IEEE Trans. Signal Process., 2006, 54, (10), pp. 40154025.
    23. 23)
      • 9. Kidera, S., Sakamoto, T., Sato, T.: ‘Accurate UWB radar three-dimensional imaging algorithm for a complex boundary without range point connections’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (4), pp. 19932004.
    24. 24)
      • 6. Guo, S., Cui, G., Wang, M., et al: ‘Similarity-based multipath suppression algorithm for through-wall imaging radar’, IET Radar Sonar Navig., 2017, 11, (7), pp. 10411050.
    25. 25)
      • 13. Setlur, P., Amin, M.G., Ahmad, F.: ‘Multipath model and exploitation in through-the-wall and urban radar sensing’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (10), pp. 40214034.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5182
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5182
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading