Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Method for scatterer trajectory association of sequential ISAR images based on Markov chain Monte Carlo algorithm

Based on sequential inverse synthetic aperture radar (ISAR) images, the three-dimensional target structure can be reconstructed using the factorisation method. However, it requires accurate scatterer trajectory formation, which is difficult due to the occlusion and trajectory crossing. To address this problem, the authors propose a novel scatterer trajectory association method based on Markov chain Monte Carlo (MCMC) algorithm. First, they derive the ellipse movement characteristics of each scatterer trajectory under stationary rotational motion model of the observed target. Then, by computing the signal-to-noise ratio of the compressed echoes, the number and positions of the scatterers in each ISAR image can be extracted precisely and efficiently through two-dimensional estimation of signal parameters via rotational invariance techniques. Next, they present a Bayesian model and inference algorithm for the scatterer trajectory association problem. MCMC is applied to estimate the scatterer trajectory matrix. Particularly, they design new prior and likelihood evaluation criterions in MCMC by making use of the ellipse movement characteristics of each scatterer trajectory. Experimental results on simulated data validate the effectiveness of the proposed method.

References

    1. 1)
      • 22. Bi, F., Huo, C., Pan, C., et al: ‘Registration of optical and SAR satellite images by exploiting the spatial relationship of the improved SIFT’, IEEE Geosci. Remote Sens., 2013, 10, (4), pp. 657661.
    2. 2)
      • 9. Li, G., Liu, Y., Wu, L., et al: ‘Three-dimensional reconstruction using ISAR sequences’. Proc SPIE Int. Soc. Opt. Eng., Wuhan, China, 2013, vol. 8919, pp. 891908-1891908-7.
    3. 3)
      • 26. Yu, Q., Medioni, G.: ‘Multiple-target tracking by spatiotemporal Monte Carlo Markov chain data association’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (12), pp. 21962210.
    4. 4)
      • 21. Lowe, D.L.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    5. 5)
      • 2. Lv, X., Xing, M., Wan, C., et al: ‘ISAR imaging of maneuvering targets based on the range centroid Doppler technique’, IEEE Trans. Image Process., 2010, 19, (1), pp. 141153.
    6. 6)
      • 25. Oh, S., Russell, S., Sastry, S.: ‘Markov chain monte carlo data association for multi-target tracking’, IEEE Trans. Automat. Control, 2009, 54, (3), pp. 481497.
    7. 7)
      • 15. Cuomo, K.M., Piou, J.E., Mayhan, J.T.: ‘Ultrawide-band coherent processing’, IEEE Trans. Antennas Propagat., 1999, 47, (6), pp. 10941107.
    8. 8)
      • 23. Wang, Y., Du, L., Dai, H.: ‘Unsupervised SAR image change detection based on SIFT keypoints and region information’, IEEE Geosci. Remote Sens., 2016, 13, (7), pp. 931935.
    9. 9)
      • 12. Burrows, M.L.: ‘Two-dimensional ESPRIT with tracking for radar imaging and feature extraction’, IEEE Trans. Antennas Propagat., 2004, 52, (2), pp. 524532.
    10. 10)
      • 11. Roy, R., Kailath, T.: ‘ESPRIT-Estimation of signal parameters via rotational invariance techniques’, IEEE Trans. Acoust. Speech Signal Proces., 1989, 37, (7), pp. 948995.
    11. 11)
      • 18. Zhang, Y., Xiao, Y., Hu, S.: ‘Method of scattering centers association and 3D reconstruction for non-cooperative radar target’, J. Electron. Informat. Tech., 2011, 33, (9), pp. 20762082.
    12. 12)
      • 16. Stoica, P., Li, H., Li, J.: ‘A new derivation of the APES filter’, IEEE Signal Process. Lett., 1999, 6, (8), pp. 205206.
    13. 13)
      • 19. Bi, Y., Wei, S., Wang, J., et al: ‘New method of scatterers association and 3D reconstruction based on multi-hypothesis tracking’, Beijing Hangkong Hangtian Daxue Xuebao, 2016, 42, (6), pp. 12191227.
    14. 14)
      • 31. Fitzgibbon, A., Pilu, M., Fisher, R.B.: ‘Direct least square fitting of ellipses’, IEEE Trans. Pattern Anal. Mach. Intell., 1999, 21, (5), pp. 476480.
    15. 15)
      • 27. Hastings, W.K.: ‘Monte Carlo sampling methods using Markov chains and their applications’, Biometrika, 1970, 57, (1), pp. 97109.
    16. 16)
      • 10. Liu, L., Zhou, F., Bai, X.R., et al: ‘Joint cross-range scaling and 3D geometry reconstruction of ISAR targets based on factorization method’, IEEE Trans. Image Process., 2016, 25, (4), pp. 17401750.
    17. 17)
      • 13. Wang, X., Zhang, M., Zhao, J.: ‘Super-resolution ISAR imaging via 2D unitary ESPRIT’, Electron. Lett., 2015, 51, (6), pp. 519521.
    18. 18)
      • 20. Shapo, B., Stuff, M., Kreucher, C., et al: ‘Detection and tracking of prominent scatterers in SAR data’. Proc SPIE Int. Soc. Opt. Eng., Baltimore, MD, United States, 2012, vol. 8394, pp. 83940G-111.
    19. 19)
      • 1. Chen, C.C., Andrews, H.C.: ‘Target-motion-induced radar imaging’, IEEE Trans. Aerosp. Electron. Syst., 1980, 16, (1), pp. 214.
    20. 20)
      • 29. Liu, L., Zhou, F., Tao, M., et al: ‘Adaptive translational motion compensation method for ISAR imaging under low SNR based on particle swarm optimization’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (11), pp. 51465157.
    21. 21)
      • 8. Li, G., Zou, J., Xu, S., et al: ‘A method of 3D reconstruction via ISAR sequences based on scattering centers association for space rigid object’. Proc. SPIE Int. Soc. Opt. Eng., Amsterdam, Netherlands, 2014, 9252, pp. 92520N-192520N-6.
    22. 22)
      • 4. Tomasi, C., Kanade, T.: ‘Shape and motion from image streams under orthography: a factorization method’, Int. J. Comput. Vis., 1992, 9, (2), pp. 137154.
    23. 23)
      • 28. De Freitas, A., De Villiers, J.P.: ‘Multiple scatterer tracking in high range resolution radar’. Int. Conf. Inf. Fusion, Singapore, 2012, pp. 16831688.
    24. 24)
      • 30. Fan, B., Qin, Y., You, P., et al: ‘An improved PFA with aperture accommodation for widefield spotlight SAR imaging’, IEEE Geosci. Remote Sens., 2015, 12, (1), pp. 37.
    25. 25)
      • 17. Li, J., Stoica, P.: ‘An adaptive filtering approach to spectral estimation and SAR imaging’, IEEE Trans. Signal Process., 1996, 44, (6), pp. 14691484.
    26. 26)
      • 14. Schmidt, R.D.: ‘A signal subspace approach to multiple emitter location and spectral estimation’, Dept. Elect. Eng., Stanford Univ., 1981.
    27. 27)
      • 24. Liu, L., Zhou, F., Tao, M.L., et al: ‘Cross-range scaling method of inverse synthetic aperture radar image based on discrete polynomial-phase transform’, IET Radar Sonar Navigat., 2015, 9, (3), pp. 333341.
    28. 28)
      • 5. Morita, T., Kanade, T.: ‘A sequential factorization method for recovering shape and motion from image streams’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (8), pp. 858867.
    29. 29)
      • 3. Wang, D.W., Ma, X.Y., Chen, A.L., et al: ‘High-resolution imaging using a wideband MIMO radar system with two distributed arrays’, IEEE Trans. Image Process., 2010, 19, (5), pp. 12801289.
    30. 30)
      • 7. Sun, G., Tian, Y., Wang, G.: ‘An overview of 3D reconstruction based on factorization’. CCTAE Int. Conf. Comput. Commun. Technol. Agric. Eng., Chengdu, China, 2010, vol. 1, pp. 373375.
    31. 31)
      • 6. McFadden, F.E.: ‘Three-dimensional reconstruction from ISAR sequences’. Proc. SPIE Int. Soc. Opt. Eng., Orlando, FL, United States, 2002, vol. 4744, pp. 5867.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5180
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5180
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address