Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Resilient fusion navigation based on failure influence level evaluation

Fault subsystems are entirely isolated on the fault-detected epoch in traditional fault-tolerant integrated navigation systems. However, this strategy ignores the asymptotic change and component differences of the soft failure influence. This study proposes a resilient fusion navigation algorithm based on the failure influence level evaluation. The failure influence mapped on the local estimation components is modelled. Then, the influential level of soft failure on the locally estimated states is evaluated. The failure influence levels are used for asymptotic resilience tuning in the global fusion. The simulation results indicate that the fault-tolerant performance under soft failure is improved significantly when using the proposed resilient fusion navigation algorithm based on the failure influence level evaluation.

References

    1. 1)
      • 16. Henry, D., Cieslak, J., Efimov, D., et al: ‘Fault diagnosis and fault-tolerant control and guidance for aerospace vehicles: from theory to application’ (Springer Science & Business Media, London, UK, 2013).
    2. 2)
      • 21. Hubbard, R., Bayarri, M.J.: ‘Confusion over measures of evidence (p's) versus errors (α’s) in classical statistical testing’, Am. Stat., 2003, 57, (3), pp. 171178.
    3. 3)
      • 17. Wang, R., Xiong, Z., Liu, J.Y., et al: ‘Asymptotic fault-tolerant fusion algorithm based on P-value mapping for multi-sensors navigation’. 2017 Int. Conf. Localization and GNSS, Nottingham, England, 2017.
    4. 4)
      • 2. Zhou, J., Knedlik, S., Loffeld, O.: ‘INS/GPS tightly-coupled integration using adaptive unscented particle filter’, J. Navig., 2010, 63, (3), pp. 491511.
    5. 5)
      • 19. Vanmarcke, E.: ‘Random fields: analysis and synthesis’ (World Scientific, Singapore, 2010).
    6. 6)
      • 12. Xia, B., Cai, T., Yang, Z.: ‘Research and simulation of a fault diagnosis and tolerant algorithm in gravity aided inertial navigation system’. WRI Global Congress on Intelligent Systems, 2009. GCIS'09, Xiamen, China, May 2009, vol. 2, pp. 459464.
    7. 7)
      • 3. Lim, C.H., Lim, T.S., Koo, V.C.: ‘A MEMS based, low cost GPS-aided INS for UAV motion sensing’. 2014 IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics (AIM), Besançon, France, July 2014, pp. 576581.
    8. 8)
      • 11. Maier, A., Kiesel, S., Trommer, G.F.: ‘Performance analysis of federated filter for SAR/TRN/GPS/INS integration’, Gyroscopy Navig., 2011, 2, (4), pp. 293300.
    9. 9)
      • 10. Hwang, I., Kim, S., Kim, Y., et al: ‘A survey of fault detection, isolation, and reconfiguration methods’, IEEE Trans. Control Syst. Technol., 2010, 18, (3), pp. 636653.
    10. 10)
      • 20. Hedges, L.V., Olkin, I.: ‘Statistical method for meta-analysis’ (Academic press, Orlando, FL, USA, 2014).
    11. 11)
      • 5. Merkle, N., Luo, W., Auer, S., et al: ‘Exploiting deep matching and SAR data for the geo-localization accuracy improvement of optical satellite images’, Remote Sens., 2017, 9, (6), p. 586.
    12. 12)
      • 7. Papazoglou, M., Tsioras, C.: ‘Integrated SAR/GPS/INS for target geolocation improvement’, J. Comput. Model, 2014, 4, (267298), p. 12.
    13. 13)
      • 4. Conte, G., Doherty, P.: ‘An integrated UAV navigation system based on aerial image matching’. 2008 IEEE Aerospace Conf., Big Sky, MT, USA., March 2008, pp. 110.
    14. 14)
      • 22. Hjort, N.L., Dahl, F.A., Steinbakk, G.H.: ‘Post-processing posterior predictive p values’, J. Am. Stat. Assoc., 2006, 101, (475), pp. 11571174.
    15. 15)
      • 1. Sadeghzadeh, I., Zhang, Y.: ‘A review on fault-tolerant control for unmanned aerial vehicles (UAVs)’ (Infotech Aerospace, St. Louis, MO, 2011).
    16. 16)
      • 14. Horvath, K., Blesa, J., Duviella, E., et al: ‘Sensor fault diagnosis of inland navigation system using physical model and pattern recognition approach’. The 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, August 2014, pp. 53095314.
    17. 17)
      • 18. Zhong, L.N., Liu, J.Y., Li, R.B., et al: ‘Approach for detection of slowly growing errors in INS/GNSS tightlycoupled system based on LS-SVM’, J Chin. Inertial Technol., 2012, 20, (6), pp. 754758.
    18. 18)
      • 8. Bhatti, U.I., Ochieng, W.Y.: ‘Failure modes and models for integrated GPS/INS systems’, J. Navig., 2007, 60, (2), pp. 327348.
    19. 19)
      • 6. Gao, S., Xue, L., Zhong, Y., et al: ‘Random weighting method for estimation of error characteristics in SINS/GPS/SAR integrated navigation system’, Aerosp. Sci. Technol., 2015, 46, pp. 2229.
    20. 20)
      • 13. Xiong, Z., Chen, J.H., Wang, R., et al: ‘A new dynamic vector formed information sharing algorithm in federated filter’, Aerosp. Sci. Technol., 2013, 29, (1), pp. 3746.
    21. 21)
      • 9. Olynik, M., Petovello, M.G., Cannon, M.E., et al: ‘Temporal variability of GPS error sources and their effect on relative positioning accuracy’. Proc. Institute of Navigation NTM 2002, San Diego, CA, USA., January 2002.
    22. 22)
      • 15. Marzat, J., Piet-Lahanier, H., Damongeot, F., et al: ‘Model-based fault diagnosis for aerospace systems: a survey’, Proc. Inst. Mech. Eng., G, J. Aerosp. Eng., 2012, 226, (10), pp. 13291360.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5161
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5161
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address