access icon free DOA estimation for coprime EMVS arrays via minimum distance criterion based on PARAFAC analysis

This study presents a minimum distance-based direction-of-arrival (DOA) estimation algorithm for coprime electromagnetic vector sensor (EMVS) arrays. The idea is to split-up the coprime array into two uniform linear arrays (ULAs) of vector sensors and arrange the received ULA data in the form of a three-way array suitable for parallel factor (PARAFAC) analysis, which fits least-square models to the received source signal mixtures of ULAs and thus enables to retrieve the model matrices corresponding to each ULA. Nevertheless, because of the array splitting the estimated DOAs from these matrices are not unique. To uniquely determine the DOA, the authors state and prove a theorem which is fundamental to the proposed algorithm and provides a means to find an estimate based on the minimum distance criterion. Efficacy of the proposed algorithm is demonstrated through performance comparison with other existing algorithms such as Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT), long vector MUltiple SIgnal Classification (MUSIC), conventional PARAFAC and the propagator method being simulated for an equivalent element ULA of EMVS and spaced half a wavelength apart. Numerical simulations reveal that the proposed algorithm outperforms the others.

Inspec keywords: array signal processing; matrix algebra; least squares approximations; direction-of-arrival estimation

Other keywords: PARAFAC analysis; array splitting; equivalent element ULA; minimum distance-based direction-of-arrival estimation algorithm; minimum distance criterion; long vector MUSIC; propagator method; coprime electromagnetic vector sensor arrays; received source signal mixtures; DOA estimation; least-square models; numerical simulations; received ULA data; ESPRIT; parallel proportional profiles and parallel factor analysis; model matrices; uniform linear arrays; coprime EMVS array

Subjects: Signal processing and detection; Linear algebra (numerical analysis); Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis); Signal processing theory; Linear algebra (numerical analysis)

References

    1. 1)
      • 25. Cheng, Q., Pal, P., Tsuji, M., et al: ‘An MDL algorithm for detecting more sources than sensors using outer-products of array output’, IEEE Trans. Signal Process., 2014, 62, (24), pp. 64386453.
    2. 2)
      • 21. Pal, P., Vaidyanathan, P.P.: ‘Nested arrays: a novel approach to array processing with enhanced degrees of freedom’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 41674181.
    3. 3)
      • 6. Li, J.: ‘Direction and polarization estimation using arrays with small loops and short dipoles’, IEEE Trans. Antennas Propag., 1993, 41, (3), pp. 379386.
    4. 4)
      • 23. Qin, S., Zhang, Y.D., Amin, M.G.: ‘Generalized coprime array configurations for direction-of-arrival estimation’, IEEE Trans. Signal Process., 2015, 63, (6), pp. 13771390.
    5. 5)
      • 11. Zoltowski, M.D., Wong, K.T.: ‘ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors’, IEEE Trans. Signal Process., 2000, 48, (8), pp. 21952204.
    6. 6)
      • 19. Zhang, X., Xu, D.: ‘Deterministic blind beamforming for electromagnetic vector sensor array’, Prog. Electromagn. Res., 2008, 84, pp. 363377.
    7. 7)
      • 1. Zhang, X., Xu, L., Xu, L., et al: ‘Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC’, IEEE Commun. Lett., 2010, 14, (12), pp. 11611163.
    8. 8)
      • 12. Wong, K.T., Yuan, X.: ‘Vector cross-product direction-finding’ with an electromagnetic vector-sensor of six orthogonally oriented but spatially noncollocating dipoles/loops’, IEEE Trans. Signal Process., 2011, 59, (1), pp. 160171.
    9. 9)
      • 30. Bro, R., Sidiropoulos, N., Giannakis, G.: ‘A fast least squares algorithm for separating trilinear mixtures’. Proc. First Int. Conf. Independent Component Analysis Blind Source Separation ICA'99, 1999, no. 2, pp. 289294.
    10. 10)
      • 5. Nehorai, A., Paldi, E.: ‘Vector-sensor array processing for electromagnetic source localization’, IEEE Trans. Signal Process., 1994, 42, (2), pp. 376398.
    11. 11)
      • 10. Wong, K.T., Zoltowski, M.D.: ‘Self-Initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace’, IEEE Trans. Antennas Propag., 2000, 48, (8), pp. 12351245.
    12. 12)
      • 3. Zhang, Z., Shi, J., Chen, H.H., et al: ‘A cooperation strategy based on Nash bargaining solution in cooperative relay networks’, IEEE Trans. Veh. Technol., 2008, 57, (4), pp. 25702577.
    13. 13)
      • 32. Le Bihan, N., Miron, S., Mars, J.I.: ‘MUSIC algorithm for vector-sensors array using biquaternions’, IEEE Trans. Signal Process., 2007, 55, (9), pp. 45234533.
    14. 14)
      • 33. Forster, P., Ginolhac, G., Boizard, M.: ‘Derivation of the theoretical performance of a tensor MUSIC algorithm’, Signal Process., 2016, 129, pp. 97105.
    15. 15)
      • 7. Roy, R., Kailath, T.: ‘ESPRIT-Estimation of signal parameters via rotational invariance techniques’, Adapt. Antennas Wirel. Commun., 2009, 37, (7), pp. 224235.
    16. 16)
      • 8. Wong, K.T., Zoltowski, M.D.: ‘Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations’, IEEE Trans. Antennas Propag., 2000, 48, (5), pp. 671681.
    17. 17)
      • 2. Zhu, G., Member, S., Zhong, C., et al: ‘Wireless information and power transfer in relay systems with multiple antennas and interference’, IEEE Trans. Commun., 2015, 63, (4), pp. 117.
    18. 18)
      • 29. Zhou, C., Shi, Z., Gu, Y., et al: ‘DECOM: DOA estimation with combined MUSIC for coprime array’. 2013 Int. Conf. Wireless Communication Signal Process WCSP 2013, 2013.
    19. 19)
      • 17. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., et al: ‘Tensor decomposition for signal processing and machine learning’, IEEE Trans. Signal Process., 2017, 65, (13), pp. 35513582.
    20. 20)
      • 15. Sidiropoulos, N.D., Bro, R., Giannakis, G.B.: ‘Parallel factor analysis in sensor array processing’, IEEE Trans. Signal Process., 2000, 48, (8), pp. 23772388.
    21. 21)
      • 31. Chong, E.K.P., Zak, S.H.: ‘An introduction to optimization’ (A John Wiley & Sons, INC Publication, NJ, 2013, 4th edn.).
    22. 22)
      • 4. Wu, Q., Ding, G., Wang, J., et al: ‘Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: two-dimensional sensing’, IEEE Trans. Wirel. Commun., 2013, 12, (2), pp. 516526.
    23. 23)
      • 22. Pal, P., Vaidyanathan, P.P.: ‘Coprime sampling and the music algorithm’. 2011 Digital Signal Processing Signal Processing Education Meeting DSP/SPE 2011 – Proc., 2011, vol. 0, no. 1, pp. 289294.
    24. 24)
      • 18. Han, K., Nehorai, A.: ‘Direction of arrival estimation using nested vector-sensor arrays via tensor modeling’. Proc. IEEE Sensors Array Multichannel Signal Processing work, January 2014, pp. 429432.
    25. 25)
      • 26. Liu, C.L., Vaidyanathan, P.P.: ‘Remarks on the spatial smoothing step in coarray MUSIC’, IEEE Signal Process. Lett., 2015, 22, (9), pp. 14381442.
    26. 26)
      • 24. Pal, P., Vaidyanathan, P.P.: ‘A novel array structure for directions-of-arrival estimation with increased degrees of freedom’. ICASSP IEEE Int. Conf. Acoustics Speech Signal Processing – Proc., 2010, no. 2, pp. 26062609.
    27. 27)
      • 14. Marcos, S., Marsal, A., Benidir, M.: ‘The propagator method for source bearing estimation’, Signal Process., 1995, 42, pp. 121138.
    28. 28)
      • 28. Zhang, Y.D., Amin, M.G., Himed, B.: ‘Sparsity-based DOA estimation using co-prime arrays’. ICASSP IEEE Int. Conf. Acoustics Speech Signal Process – Proc., 2013, pp. 39673971.
    29. 29)
      • 16. Miron, S., Le Bihan, N., Mars, J.I.: ‘Vector-sensor MUSIC for polarized seismic sources localization’, EURASIP Appl J. Signal Process., 2005, 2005, (1), pp. 7484.
    30. 30)
      • 20. Guo, X., Miron, S., Brie, D.: ‘Identifiability of the PARAFAC model for polarized source mixture on a vector sensor array’. ICASSP IEEE Int. Conf. Acoustics Speech Signal Processing Proc., 2008, vol. 7039, no. 3, pp. 24012404.
    31. 31)
      • 9. Wong, K.T., Zoltowski, M.D.: ‘Uni-vector-sensor ESPRIT for multisource azimuth elevation, and polarization estimation’, IEEE Trans. Antennas Propag., 1997, 45, (10), pp. 14671474.
    32. 32)
      • 27. Liu, C., Vaidyanathan, P.P.: ‘Coprime arrays and samplers for space–time adaptive processing’ (California Institute of Technology, Pasadena, CA 91125, USA, 2015), pp. 23642368, (3).
    33. 33)
      • 13. He, J., Liu, Z.: ‘Computationally efficient 2D direction finding and polarization estimation with arbitrarily spaced electromagnetic vector sensors at unknown locations using the propagator method’, Digit. Signal Process. A, Rev. J., 2009, 19, (3), pp. 491503.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5155
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5155
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading