http://iet.metastore.ingenta.com
1887

Robust target motion analysis using the possibility particle filter

Robust target motion analysis using the possibility particle filter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Bearings-only target motion analysis (TMA) is the process of estimating the state of a moving emitting target from noisy measurements collected by a single passive observer. The focus of this study is on recursive TMA, traditionally solved using the Bayesian filters (e.g. extended or unscented Kalman filters, particle filters). The TMA is a difficult problem and may result in track divergence, especially when the assumed probabilistic models are imperfect or mismatched. As a robust alternative to Bayesian filters for TMA, the authors present a recently proposed stochastic filter referred to as the possibility filter. The filter is implemented in the sequential Monte Carlo framework, and named the possibility particle filter. This study demonstrates its superior performance against the standard (Bayesian) particle filter in the presence of a model mismatch, while in the case of the exact model match, its performance equals that of the standard particle filter.

References

    1. 1)
      • 1. Becker, K.: ‘Target motion analysis (TMA)’, in Stergiopoulos, S., (Ed.): ‘Advanced signal processing handbook’ (CRC Press, 2001), ch. 9, pp. 385408.
    2. 2)
      • 2. Lingren, A. G., Gong, K. F.: ‘Position and velocity estimation via bearing observations’, IEEE Trans. Aerosp. Electron. Syst., 1978, 14, (4), pp. 564577.
    3. 3)
      • 3. Nardone, S. C., Lindgren, A. G., Gong, K. F.: ‘Fundamental properties and performance of conventional bearings-only target motion analysis’, IEEE Trans. Autom. Control, 1984, 29, (9), pp. 775787.
    4. 4)
      • 4. Ristic, B., Arulampalam, S., Gordon, N.: ‘Beyond the Kalman filter: particle filters for tracking applications’ (Artech House, Boston, MA, 2004).
    5. 5)
      • 5. Fogel, E., Gavish, M.: ‘Nth-order dynamics target observability from angle measurements’, IEEE Trans. Aerosp. Electron. Syst., 1988, 24, (3), pp. 305308.
    6. 6)
      • 6. Houssineau, J., Bishop, A.N.: ‘Smoothing and filtering with a class of outer measures’, SIAM J. Uncertain. Quantif., 2018, 6, (2), pp. 845866.
    7. 7)
      • 7. Houssineau, J., Ristic, B.: ‘Sequential monte carlo algorithms for a class of outer measures’, arXiv preprint arXiv, 2017, p. 1708.06489.
    8. 8)
      • 8. Bishop, A., Houssineau, J., Angley, D., et al: ‘Spatio-Temporal Tracking from Natural Language Statements using Outer Probability Theory’, Information Sciences, 2018, 463–464, pp. 5674.
    9. 9)
      • 9. O'Hagan, T.: ‘Dicing with the unknown’, Significance, 2004, 1, (3), pp. 132133.
    10. 10)
      • 10. Ristic, B., Arulampalam, S., Wang, X.: ‘Measurement variance ignorant target motion analysis’, Inf. Fusion, 2018, 43, pp. 2732.
    11. 11)
      • 11. Bar-Shalom, Y., Li, X. R., Kirubarajan, T.: ‘Estimation with applications to tracking and navigation’ (John Wiley & Sons, New York, NY, 2001).
    12. 12)
      • 12. Jazwinski, A. H.: ‘Stochastic processes and filtering theory’ (Academic Press, New York, NY, 1970).
    13. 13)
      • 13. Zadeh, L. A.: ‘Fuzzy sets as a basis for a theory of possibility’, Fuzzy Sets Syst., 1978, 1, pp. 328.
    14. 14)
      • 14. Dubois, D.: ‘Possibility theory and statistical reasoning’, Comput. Stat. Data Anal., 2006, 51, (1), pp. 4769.
    15. 15)
      • 15. Dubois, D., Prade, H.: ‘Possibility theory and its applications: where do we stand?’, in ‘Springer handbook of computational intelligence’ (Springer, Dordrecht, Netherlands, 2015), pp. 3160.
    16. 16)
      • 16. Carlsson, C., Fullér, R.: ‘Possibilistic mean value and variance of fuzzy numbers: some examples of application’. IEEE Int. Conf. on Fuzzy Systems, 2009, pp. 587592.
    17. 17)
      • 17. Doucet, A., de Freitas, J. F. G., Gordon, N. J., (Eds.): ‘Sequential Monte Carlo methods in practice’ (Springer, New York, NY, 2001).
    18. 18)
      • 18. Arulampalam, M. S., Maskell, S., Gordon, N., et al: ‘A tutorial on particle filters for non-linear/non-Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 174188.
    19. 19)
      • 19. Cappé, O., Godsill, S. J., Moulines, E.: ‘An overview of existing methods and recent advances in sequential Monte Carlo’, Proc. IEEE, 2007, 95, (5), pp. 899924.
    20. 20)
      • 20. Bishop, C.M.: ‘Pattern recognition and machine learning’ (Springer, New York, NY, 2006).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5144
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address