Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust target motion analysis using the possibility particle filter

Bearings-only target motion analysis (TMA) is the process of estimating the state of a moving emitting target from noisy measurements collected by a single passive observer. The focus of this study is on recursive TMA, traditionally solved using the Bayesian filters (e.g. extended or unscented Kalman filters, particle filters). The TMA is a difficult problem and may result in track divergence, especially when the assumed probabilistic models are imperfect or mismatched. As a robust alternative to Bayesian filters for TMA, the authors present a recently proposed stochastic filter referred to as the possibility filter. The filter is implemented in the sequential Monte Carlo framework, and named the possibility particle filter. This study demonstrates its superior performance against the standard (Bayesian) particle filter in the presence of a model mismatch, while in the case of the exact model match, its performance equals that of the standard particle filter.

References

    1. 1)
      • 8. Bishop, A., Houssineau, J., Angley, D., et al: ‘Spatio-Temporal Tracking from Natural Language Statements using Outer Probability Theory’, Information Sciences, 2018, 463–464, pp. 5674.
    2. 2)
      • 6. Houssineau, J., Bishop, A.N.: ‘Smoothing and filtering with a class of outer measures’, SIAM J. Uncertain. Quantif., 2018, 6, (2), pp. 845866.
    3. 3)
      • 7. Houssineau, J., Ristic, B.: ‘Sequential monte carlo algorithms for a class of outer measures’, arXiv preprint arXiv, 2017, p. 1708.06489.
    4. 4)
      • 10. Ristic, B., Arulampalam, S., Wang, X.: ‘Measurement variance ignorant target motion analysis’, Inf. Fusion, 2018, 43, pp. 2732.
    5. 5)
      • 12. Jazwinski, A. H.: ‘Stochastic processes and filtering theory’ (Academic Press, New York, NY, 1970).
    6. 6)
      • 5. Fogel, E., Gavish, M.: ‘Nth-order dynamics target observability from angle measurements’, IEEE Trans. Aerosp. Electron. Syst., 1988, 24, (3), pp. 305308.
    7. 7)
      • 3. Nardone, S. C., Lindgren, A. G., Gong, K. F.: ‘Fundamental properties and performance of conventional bearings-only target motion analysis’, IEEE Trans. Autom. Control, 1984, 29, (9), pp. 775787.
    8. 8)
      • 11. Bar-Shalom, Y., Li, X. R., Kirubarajan, T.: ‘Estimation with applications to tracking and navigation’ (John Wiley & Sons, New York, NY, 2001).
    9. 9)
      • 14. Dubois, D.: ‘Possibility theory and statistical reasoning’, Comput. Stat. Data Anal., 2006, 51, (1), pp. 4769.
    10. 10)
      • 2. Lingren, A. G., Gong, K. F.: ‘Position and velocity estimation via bearing observations’, IEEE Trans. Aerosp. Electron. Syst., 1978, 14, (4), pp. 564577.
    11. 11)
      • 16. Carlsson, C., Fullér, R.: ‘Possibilistic mean value and variance of fuzzy numbers: some examples of application’. IEEE Int. Conf. on Fuzzy Systems, 2009, pp. 587592.
    12. 12)
      • 9. O'Hagan, T.: ‘Dicing with the unknown’, Significance, 2004, 1, (3), pp. 132133.
    13. 13)
      • 4. Ristic, B., Arulampalam, S., Gordon, N.: ‘Beyond the Kalman filter: particle filters for tracking applications’ (Artech House, Boston, MA, 2004).
    14. 14)
      • 13. Zadeh, L. A.: ‘Fuzzy sets as a basis for a theory of possibility’, Fuzzy Sets Syst., 1978, 1, pp. 328.
    15. 15)
      • 20. Bishop, C.M.: ‘Pattern recognition and machine learning’ (Springer, New York, NY, 2006).
    16. 16)
      • 15. Dubois, D., Prade, H.: ‘Possibility theory and its applications: where do we stand?’, in ‘Springer handbook of computational intelligence’ (Springer, Dordrecht, Netherlands, 2015), pp. 3160.
    17. 17)
      • 18. Arulampalam, M. S., Maskell, S., Gordon, N., et al: ‘A tutorial on particle filters for non-linear/non-Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 174188.
    18. 18)
      • 19. Cappé, O., Godsill, S. J., Moulines, E.: ‘An overview of existing methods and recent advances in sequential Monte Carlo’, Proc. IEEE, 2007, 95, (5), pp. 899924.
    19. 19)
      • 1. Becker, K.: ‘Target motion analysis (TMA)’, in Stergiopoulos, S., (Ed.): ‘Advanced signal processing handbook’ (CRC Press, 2001), ch. 9, pp. 385408.
    20. 20)
      • 17. Doucet, A., de Freitas, J. F. G., Gordon, N. J., (Eds.): ‘Sequential Monte Carlo methods in practice’ (Springer, New York, NY, 2001).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5144
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address