access icon free Passive SAR imaging using DVB-T illumination for airborne applications

This study presents recent research results obtained by the Warsaw University of Technology, Poland in airborne passive synthetic aperture radar (SAR) imaging using digital video broadcasting-terrestrial illumination. The main goal of the research was to prove the possibility of passive SAR imaging and its usage for airborne applications. In the study, different signal processing techniques used for passive SAR image creation are discussed in detail, together with an analysis of their computational requirements and implementation possibilities on the computing platforms available on the market. Also, a real measurement campaign is presented showing passive SAR images obtained. Finally, challenges in airborne passive SAR image creation are discussed, showing potential directions of the future development in this field.

Inspec keywords: airborne radar; synthetic aperture radar; digital video broadcasting; passive radar; radar imaging

Other keywords: digital video broadcasting-terrestrial illumination; airborne passive synthetic aperture radar imaging; airborne passive SAR image creation; real measurement campaign; airborne applications; signal processing techniques; passive SAR imaging

Subjects: Radar equipment, systems and applications; Optical, image and video signal processing; Radio and television broadcasting

References

    1. 1)
      • 20. Brisken, S., Martorella, M.: ‘Examination of cost functions for multistatic image quality based autofocus’. 2013 Signal Processing Symp. (SPS), Serock, 2013, pp. 14.
    2. 2)
      • 2. Massonnet, D., Souyris, J.-C.: ‘Imaging with synthetic aperture radar’ (EPFL Press, USA, 2008).
    3. 3)
      • 21. Radecki, K., Samczyński, P., Kulpa, K., et al: ‘A real-time unfocused SAR processor based on a portable CUDA GPU’. 2015 European Radar Conf. (EuRAD), Paris, France, 2015, pp. 173176.
    4. 4)
      • 6. Fitch, P.J.: ‘Synthetic aperture radar’ (Springer-Verlag, USA, 1988).
    5. 5)
      • 25. Samczynski, P., Gromek, D., Bączyk, M., et al: ‘Challenges in passive radar imaging techniques’. Proc. NATO SET-231 Specialist Meeting on ‘Multi-band Multi-mode Radar’, Lisbon, Portugal, 17–18 October 2016, pp. 114.
    6. 6)
      • 19. Berizzi, F., Corsini, G.: ‘Autofocusing of inverse synthetic aperture radar images using contrast optimization’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, pp. 11851191.
    7. 7)
      • 14. Purchla-Malanowska, M., Malanowski, M. P.: ‘Simple motion compensation algorithm for unfocused synthetic aperture radar’. Proc. SPIE: Photonics Applications in Astronomy, Communications, Research and High Energy Physics Experiments II, Wilga, Poland, 2004, vol. 5484, pp. ss659ss664.
    8. 8)
      • 16. Yegulalp, A.F.: ‘Fast backprojection algorithm for synthetic aperture radar’. The Record of the 1999 IEEE Radar Conf., MA, USA, 1999, pp. 6065.
    9. 9)
      • 8. Yonel, B., Mason, E., Yazıcı, B.: ‘Deep learning for passive synthetic aperture radar’, IEEE. J. Sel. Top. Signal. Process., 2018, 12, (1), pp. 90103.
    10. 10)
      • 26. Kulpa, K.: ‘Signal processing in noise waveform radar’ (Artech House, USA, 2013).
    11. 11)
      • 12. Gromek, D., Kulpa, K., Samczyński, P.: ‘Experimental results of passive SAR imaging using DVB-T illuminators of opportunity’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (8), pp. 11241128.
    12. 12)
      • 23. NVIDIA jetson: The embedded platform for autonomous everything’. Available at https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/, accessed 27 April 2018.
    13. 13)
      • 22. Radecki, K., Samczyński, P., Kulpa, K., et al: ‘Implementation of a real-time unfocused SAR algorithm using various computing platforms’. Signal Processing Symp. (SPSympo), Debe, Poland, 2015, pp. 15.
    14. 14)
      • 9. Mao, X., Zhang, Y. D., Amin, M. G.: ‘Low-complexity sparse reconstruction for high-resolution multi-static passive SAR imaging’, EURASIP J. Adv. Signal Process., 2014, 1, pp. 16876180.
    15. 15)
      • 15. Samczynski, P., Kulpa, K.: ‘Coherent MapDrift technique’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (3–1), pp. 15051517.
    16. 16)
      • 10. Palmer, J.E., Harms, H.A., Searle, S.J., et al: ‘DVB-T passive radar signal processing’, IEEE Trans. Signal Process., 2013, 61, (8), pp. 21162126.
    17. 17)
      • 13. Ulander, L. M. H., Frölind, P. O., Gustavsson, A., et al: ‘Airborne passive SAR imaging based on DVB-T signals’. 2017 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Fort Worth, TX, 2017, pp. 24082411.
    18. 18)
      • 3. Skolnik, M.: ‘Radar handbook’ (McGraw-Hill Education, USA, 2008, 3rd edn.).
    19. 19)
      • 4. Oliver, C., Quegan, S.: ‘Understanding synthetic aperture radar images’ (Scitech Publishing, USA, 2004).
    20. 20)
      • 5. Franceschetti, G., Lanari, R.: ‘Synthetic aperture radar processing’ (CRC Press, USA, 1999).
    21. 21)
      • 1. Curlander, J.C., McDonough, R.N.: ‘Synthetic aperture radar. Systems and signal processing’ (John Wiley & Sons, USA, 1991).
    22. 22)
      • 18. Gromek, D., Samczyński, P., Kulpa, K., et al: ‘Initial results of passive SAR imaging using a DVB-T based airborne radar receiver’. Proc. European Radar Conf., EuRAD 2014, Rome, Italy, 2014, pp. 137140.
    23. 23)
      • 17. Gromek, D., Krysik, P., Kulpa, K., et al: ‘Ground-based mobile passive imagery based on a DVB-T signal of opportunity’. 2014 Int. Radar Conf., Lille, 2014, pp. 14.
    24. 24)
      • 24. Sentinel-1 SAR user guide overview’. Available at https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/overview, accessed 20 April 2018.
    25. 25)
      • 11. Evers, A., Jackson, J. A.: ‘Experimental passive SAR imaging exploiting LTE, DVB, and DAB signals’. 2014 IEEE Radar Conf., Cincinnati, OH, 2014, pp. 06800685.
    26. 26)
      • 7. Hellsten, H., Ulander, L.M.H., Gustavsson, A., et al: ‘Development of VHF CARABAS II SAR’. Proc. SPIE 2747, Radar Sensor Technology, Orlando, FL, USA, 17 June 1996.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5123
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading