access icon free Moderate squint imaging algorithm for the multiple-hydrophone SAS with receiving hydrophone dependence

The existing imaging algorithms for the multiple-hydrophone synthetic aperture sonar (SAS) cannot obtain a good imaging result in the moderate squint case where the squint angle is from 10° to 20°, because they do not take the differential range curvature into account, and the existing methods of equivalent spatial sampling cannot work well. This study proposes an imaging algorithm for the moderate squint multiple-hydrophone SAS. First, the range history model of the moderate squint multiple-hydrophone SAS is established. Second, the signal of each hydrophone is processed separately with bistatic imaging algorithm to correct the differential range curvature. Third, the corrected signal of each hydrophone is shifted to the same range bin to compensate the relative range offset, and is added coherently together to remove the azimuth aliasing and to reconstruct the image without loss of resolution. Fourth, a new method of equivalent azimuth sampling is developed, and a PRF adjusted with squint angle is given. Finally, the validity of the proposed algorithm is tested by the simulation and real data.

Inspec keywords: synthetic aperture sonar; sonar imaging; hydrophones; image reconstruction

Other keywords: hydrophone dependence; squint angle; moderate squint imaging algorithm; multiple-hydrophone synthetic aperture sonar; relative range offset; bistatic imaging algorithm; range history model; moderate squint multiple-hydrophone SAS; differential range curvature

Subjects: Sonar and acoustic radar; Optical, image and video signal processing

References

    1. 1)
      • 4. Hayes, M.P., Gough, P.T.: ‘Synthetic aperture sonar: a review of current status’, IEEE J. Ocean. Eng., 2009, 34, (3), pp. 207224.
    2. 2)
      • 10. Callow, H.J., Hayes, M.P., Gough, P.T.: ‘Motion-compensation improvement for widebeam, multiple-receiver sas systems’, IEEE J. Ocean. Eng., 2009, 34, (3), pp. 262268.
    3. 3)
      • 15. Liu, B., Wang, T., Bao, Z.: ‘An analytical method of updating the range derivatives and a simple image registration method for the Msr-based range Doppler algorithm’, IEEE Geosci. Remote Sens. Lett., 2010, 7, (4), pp. 831835.
    4. 4)
      • 6. Banks, S.M., Griffiths, H.D.: ‘Imaging and motion estimation for synthetic aperture sonar based on fast factorised back-projection’. Proc. 6th Eur. Conf. Underwater Acoust, Gdansk, Poland, June 2002, pp. 529534.
    5. 5)
      • 24. Saebø, T.O.: ‘Seafloor depth estimation by means of interferometric synthetic aperture sonar’. PhD thesis, University of Tromsø, 2010.
    6. 6)
      • 17. Hua, Z., Xingzhao, L.: ‘An effective focusing approach for azimuth invariant bistatic sar processing’, Signal Process., 2010, 90, pp. 395404.
    7. 7)
      • 7. Gebert, N.: ‘Multi-channel azimuth processing for high-resolution wide-swath sar imaging’ (DLR, Cologne, 2009), pp. 5052.
    8. 8)
      • 22. Cumming, I.G., Wong, F.H.: ‘Digital processing of synthetic aperture radar data: algorithms and implementation’ (Artech House, MA, 2005), pp. 7274.
    9. 9)
      • 12. Gough, P.T., Miller, M.A.: ‘Displaced ping imaging autofocus for a multi-hydrophone sas’, IEE Proc. Radar Sonar Navig., 2004, 151, (3), pp. 163170.
    10. 10)
      • 19. Zhong, H., Liu, X.: ‘An extended nonlinear chirp-scaling algorithm for focusing large-baseline azimuth-invariant bistatic sar data’, IEEE Geosci. Remote Sens. Lett., 2009, 6, (3), pp. 548552.
    11. 11)
      • 23. Callow, H.J.: ‘Signal processing for synthetic aperture sonar image enhancement’. PhD thesis, University of Canterbury, 2003.
    12. 12)
      • 9. Yang, H.: ‘Studies on imaging algorithm of multiple-receiver synthetic aperture sonar’. Ph.D thesis, Naval University of Engineering, 2010.
    13. 13)
      • 3. Hansen, R.E., Callow, H.J., Saebø, T.O., et al: ‘Challenges in seafloor imaging and mapping with synthetic aperture sonar’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (10), pp. 36773687.
    14. 14)
      • 5. Pengfei, Z., Zelin, J., Wei, L., et al: ‘A motion compensation method for wide-swath synthetic aperture sonar’, Chin. J. Acoust., 2016, 35, (03), pp. 277290.
    15. 15)
      • 16. Hu, C., Liu, Z., Long, T.: ‘An improved Cs algorithm based on the curved trajectory in geosynchronous sar’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2012, 5, (3), pp. 795808.
    16. 16)
      • 20. William, B: ‘Interferometic synthetic aperture sonar processing’. Master, George Institute of Technology, 1999.
    17. 17)
      • 13. Heremans, R., Dupont, Y., Acheroy, M.: ‘Motion compensation in high resolution synthetic aperture sonar (Sas) images’, in Silva, R. (Ed.): ‘Advances in sonar technology’ (Intech Open, Rijeka, 2009), pp. 5456.
    18. 18)
      • 8. Tian, Z., Tang, J., Zhong, H., et al: ‘Extended range Doppler algorithm for multiple-receiver synthetic aperture sonar based on exact analytical two-dimensional spectrum’, IEEE J. Ocean. Eng., 2016, 41, (1), pp. 164174.
    19. 19)
      • 14. Neo, Y.L., Wong, F.H., Cumming, I.G.: ‘Processing of azimuth-invariant bistatic sar data using the range Doppler algorithm’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (1), pp. 1421.
    20. 20)
      • 26. Hawkins, D.W.: ‘Synthetic aperture imaging algorithms:with application to wide bandwidth sonar’. PhD thesis, University of Canterbury, 1996.
    21. 21)
      • 18. Liu, B., Wang, T., Wu, Q., et al: ‘Bistatic sar data focusing using an omega-K algorithm based on method of series reversion’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (8), pp. 28992912.
    22. 22)
      • 21. Bellettini, A., Pinto, M.: ‘Design and experimental results of a 300-Khz synthetic aperture sonar optimized for shallow-water operations’, IEEE J. Ocean. Eng., 2009, 34, (3), pp. 285293.
    23. 23)
      • 11. Leier, S., Zoubir, A.M.: ‘Quality assessment of synthetic aperture sonar images based on a single ping reference’. Proc. of OCEANS, Santander, Spain, June 2011, pp. 69.
    24. 24)
      • 2. Hayes, M.P., Gough, P.T.: ‘Interferometric synthetic aperture processing: a comparison of sonar and radar’, J. Acoust. Soc. Am., 2008, 123, (123), p. 3907.
    25. 25)
      • 1. Marx, D., Nelson, M., Chang, E., et al: ‘An introduction to synthetic aperture sonar’. Proc. of the Tenth IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, USA, August 2000, pp. 1616.
    26. 26)
      • 25. Neo, Y.L., Wong, F., Cumming, I.G.: ‘A two-dimensional spectrum for bistatic sar processing using series reversion’, IEEE Geosci. Remote Sens. Lett., 2007, 4, (1), pp. 9396.
    27. 27)
      • 27. Zhang, X., Tang, J., Zhong, H.: ‘Multireceiver correction for the chirp scaling algorithm in synthetic aperture sonar’, IEEE J. Ocean. Eng., 2014, 39, (3), pp. 472481.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5055
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading