Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design of a 24 GHz FMCW radar system based on sub-harmonic generation

This study presents a novel frequency modulated continuous wave (FMCW) radar system based on sub-harmonic generation, where a 24 GHz frequency divider-by-10 is used as an active reflector tag. A practical prototype is designed and fabricated on a GF45nm-Silicon on Insulator (SOI) technology for the 24 GHz building blocks, while a GF0.18 µm 7WL Bipolar Complementary Metal Oxide Semiconductor (BiCMOS) technology was used for the 2.4 GHz receiver and baseband. System measurement results show that as opposed to conventional primary radars, the proposed system is immune to strong multi-path interferences resulting from direct reflections of the interrogating signal. The system achieves a ranging precision of 3.7 mm with loop measurements. Moreover, when measured in an indoor environment, the ranging results show a ranging precision and accuracy of 5.8 and 22.3 cm, respectively, which outperform other FMCW radars in the literature.

References

    1. 1)
      • 11. Lorenzo, J., Lazaro, A., Villarino, R., et al: ‘Active backscatter transponder for FMCW radar applications’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 16101613.
    2. 2)
      • 15. El Agroudy, N., El-Shennawy, M., Joram, N., et al: ‘Design of a 24 GHz frequency divider-by-10 in 45 nm-silicon-on-insulator as an active reflector tag’, IET Electron. Lett., 2017, 53, (23), pp. 15461548.
    3. 3)
      • 9. Melzer, A., Starzer, F., Jäger, H., et al: ‘Real-time mitigation of short-range leakage in automotive FMCW radar transceivers’, IEEE TCAS II: Express Briefs, 2017, 64, (7), pp. 847851.
    4. 4)
      • 19. Shimizu, S., Mizuno, J., Morishita, S., et al: ‘Analysis and modeling of oscillators with interference noise’. IEEE Int. Conf. Electronics, Circuits and Systems, Marseille, February 2014, pp. 128131.
    5. 5)
      • 1. Sorrentino, R., Sbarra, E., Urbani, L., et al: ‘Accurate FMCW radar-based indoor localization system’. Proc. IEEE RFID-TA, Nice, November 2012, pp. 362368.
    6. 6)
      • 16. El-Shennawy, M., Al-Qudsi, B., Joram, N., et al: ‘A dual band FMCW radar receiver with integrated active balun and baseband AGC loop’. IEEE Int. Symp. Circuits and Systems, Baltimore, MD, May 2017, pp. 14.
    7. 7)
      • 10. Melzer, A., Onic, A., Starzer, F., et al: ‘Short-range leakage cancelation in FMCW radar transceivers using an artificial on-chip target’, IEEE J. Sel. Top. Signal Process., 2015, 9, (8), pp. 16501660.
    8. 8)
      • 4. Al-Qudsi, B., Joram, N., El-Shennawy, M., et al: ‘Scalable indoor positioning system with multi-band FMCW’, IET Radar Sonar Navig., 2018, 12, (1), pp. 4655.
    9. 9)
      • 8. Melzer, A., Huemer, M., Onic, A.: ‘Novel mixed-signal based short-range leakage canceler for FMCW radar transceiver MMICs’. IEEE Int. Symp. Circuits and Systems, Baltimore, MD, May 2017, pp. 14.
    10. 10)
      • 17. Wehrli, S., Gierlich, R., Huttner, J., et al: ‘Integrated active pulsed reflector for an indoor local positioning system’, IEEETrans. Microw. Theory Tech., 2010, 58, (2), pp. 267276.
    11. 11)
      • 3. Joram, N., Al-Qudsi, B., Wagner, J., et al: ‘Design of a multi-band FMCW radar module’. Tenth Workshop on Positioning, Navigation and Communication, Dresden, March 2013, pp. 16.
    12. 12)
      • 6. Gierlich, R., Huettner, J., Ziroff, A., et al: ‘A reconfigurable MIMO system for high-precision FMCW local positioning’, IEEETrans. Microw. Theory Tech., 2011, 59, (12), pp. 32283238.
    13. 13)
      • 5. Wang, H.N., Huang, Y.W., Chung, S.J.: ‘Spatial diversity 24 GHz FMCW radar with ground effect compensation for automotive applications’, IEEE Trans. Veh. Technol., 2017, 66, (2), pp. 965973.
    14. 14)
      • 14. Eshraghian, K., Cole, P.H.: ‘A new class of passive subharmonic transponders’, IEE Electron. Circuits Syst., 1983, 130, (2), pp. 4552.
    15. 15)
      • 18. Joram, N., Wagner, J., Strobel, A, et al: ‘5.8 GHz demonstration system for evaluation of FMCW ranging’. Ninth Workshop on Positioning, Navigation and Communication, Dresden, March 2012, pp. 137141.
    16. 16)
      • 20. Namgoong, W.: ‘An all-digital approach to supply noise cancellation in digital phase-locked loop’, IEEE Trans. Very Large Scale Integr. Syst., 2016, 24, (3), pp. 10251035.
    17. 17)
      • 7. Lee, R.H., Tsai, Z.D., Lang, C.T., et al: ‘A switched-beam FMCW radar for wireless indoor positioning system’. Eighth EuRAD, Manchester, October 2011, pp. 6568.
    18. 18)
      • 13. Ma, Y., Kan, E.: ‘Accurate indoor ranging by broadband harmonic generation in passive NLTL backscatter tags’, IEEETrans. Microw. Theory Tech., 2014, 62, (5), pp. 12491261.
    19. 19)
      • 12. Yu, F., Lyon, K., Kan, E.: ‘A novel passive RFID transponder using harmonic generation of nonlinear transmission lines’, IEEE Trans. Microw. Theory Tech., 2010, 58, (12), pp. 41214127.
    20. 20)
      • 2. Mitomo, T., Ono, N., Hoshino, H., et al: ‘A 77 GHz 90 nm CMOS transceiver for FMCW radar applications’, IEEE J. Solid-State Circuits, 2011, 45, (4), pp. 928937.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5050
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5050
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address