Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Cognitive structure adaptive particle filter for radar manoeuvring target tracking

The accuracy and efficiency of the particle filter algorithm partly depend on the number of particles used in the estimation. The number of particles is specified beforehand and kept fixed in the process of radar manoeuvring target tracking (MTT). In practice this may be highly inappropriate since it ignores the uncertainty in the models and the varying dynamics of the processes. A cognitive structure adaptive particle filter (CSAPF) algorithm is proposed to increase the accuracy and efficiency by adapting the number of particles online. The name CSAPF is due to the fact that the authors change the number of particles dynamically with radar's real-time perceptual information entropy for MTT. The authors cognitive structure approach chooses a transmitted waveform to improve tracking accuracy and chooses the lower bound of required particles to improve tracking efficiency. Monte–Carlo simulation results show that the approach has significant improvements over the particle filter with a fixed number of particles and over the fixed waveform particle filter algorithm.

References

    1. 1)
      • 20. Zhang, X., Wang, K., Liu, X.: ‘Joint optimisation of transmit waveform and receive filter for cognitive radar’, IET Radar Sonar Navig., 2017, 12, (1), pp. 1120.
    2. 2)
      • 3. Wang, X., Chen, J.F., Shi, Z.G., et al: ‘Fuzzy-control-based particle filter for maneuvering target tracking’, Prog. Electromagn. Res., 2011, 118, (3), pp. 115.
    3. 3)
      • 1. MacEachern, S.N., Clyde, M., Liu, J. S.: ‘Sequential importance sampling for nonparametric Bayes models: the next generation’, Can. J. Stat., 1999, 27, (2), pp. 251267.
    4. 4)
      • 22. Fatemi, M., Haykin, S.: ‘Cognitive control: theory and application’, IEEE Access, 2014, 2, pp. 698710.
    5. 5)
      • 8. Closas, P., Fernandez-Prades, C.: ‘Particle filtering with adaptive number of particles’. IEEE Aerospace Conf., Washington, DC, USA, March 2011, pp. 17.
    6. 6)
      • 14. Haykin, S., Amiri, A., Fatemi, M.: ‘Cognitive control in cognitive dynamic systems: a new way of thinking inspired by the brain’. IEEE Symp. on Adaptive Dynamic Programming and Reinforcement Learning, Orlando, USA, December 2014, pp. 17.
    7. 7)
      • 24. Fisher, R. A.: ‘Statistical methods for research workers’ (Oliver & Boyd, Edinburgh, UK, 1925), pp. 6263.
    8. 8)
      • 17. Kristine, L.B., Christopher, J.B., Graeme, E. S., et al: ‘Cognitive radar framework for target detection and tracking’, IEEE J. Mag., 2015, 9, (8), pp. 14271439.
    9. 9)
      • 4. Li, L.Q., Xie, W.X., Liu, Z.X.: ‘Auxiliary truncated particle filtering with least-square method for bearings-only maneuvering target tracking’, IEEE Trans. Aerosp. Electron. Syst., 2017, 52, (5), pp. 25622567.
    10. 10)
      • 18. Úbeda-Medina, L., Grajal, J.: ‘Multiple target tracking in the fully adaptive radar framework’. Statistical Signal Processing Workshop (SSP), Palma de Mallorca, Spain, June 2016, pp. 15.
    11. 11)
      • 15. Wang, J. T., Qin, Y. L., Wang, H. Q., et al: ‘Dynamic waveform selection for maneuvering target tracking in clutter’, IET Radar Sonar Navig., 2013, 7, (7), pp. 815825.
    12. 12)
      • 11. Kershaw, D.J., Evans, R.J.: ‘Optimal waveform selection for tracking systems’, IEEE Trans. Inf. Theory, 1994, 40, (5), pp. 15361550.
    13. 13)
      • 13. Haykin, S.: ‘Cognitive radar: a way of the future’, IEEE Signal Process. Mag., 2006, 23, (1), pp. 3040.
    14. 14)
      • 10. Soto, A.: ‘Self adaptive particle filter’. Int. Joint Conf. on Artificial Intelligence, Edinburgh, Scotland, July 2005, pp. 13981403.
    15. 15)
      • 12. Niu, R., Willett, P., Bar-Shalom, Y.: ‘Tracking considerations in selection of radar waveform for range and range-rate measurements’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (2), pp. 467487.
    16. 16)
      • 16. Zhang, X., Gao, Y., Wang, K., et al: ‘Optimal waveform design for target tracking and estimation in cognitive radar’. IEEE Radar Conf., Seattle, USA, May 2017, pp. 01750179.
    17. 17)
      • 2. Doucet, A., Godsill, S., Andrieu, C.: ‘On sequential Monte Carlo sampling methods for Bayesian filtering’, Stat. Comput., 2000, 10, (3), pp. 197208.
    18. 18)
      • 5. Afshari, H.H., Gadsden, S.A., Habibi, S.: ‘Gaussian filters for parameter and state estimation: a general review of theory and recent trends’, Signal Process., 2017, 135, pp. 218238.
    19. 19)
      • 19. Kilani, M.B., Nijsure, Y., Gagnon, G., et al: ‘Cognitive waveform and receiver selection mechanism for multistatic radar’, IET Radar Sonar Navig., 2016, 10, (2), pp. 417425.
    20. 20)
      • 7. Lee, D.Y., Shim, S.W., Hwang, M.C., et al: ‘Target tracking using adaptive coarse-to-fine particle filter’. AIAA Guidance, Navigation, and Control Conf., Grapevine, Texas, Jan. 2017, pp. 913.
    21. 21)
      • 6. Bolic, M., Sangjin, H., Djuric, P.M.: ‘Performance and complexity analysis of adaptive particle filtering for tracking application’. The Thirty-Six Asilomar Conf. on Signal, System and Computers, Pacific Grove, CA, USA, Nov. 2002, pp. 853857.
    22. 22)
      • 23. Zhou, H., Jing, Z., Wang, P.: ‘Tracking of maneuvering targets’ (National Defence Industry Press, Beijing, China, 1991), pp. 210215 (in Chinese).
    23. 23)
      • 21. Jin, B., Guo, J., Su, B., et al: ‘Adaptive waveform selection for maneuvering target tracking in cognitive radar’, Digit. Signal Process., 2018, 75, pp. 210221.
    24. 24)
      • 25. Zhou, H., Kumar, K.: ‘A current statistical model and adaptive algorithm for estimating maneuvering targets’, AIAA J. Guid. Control Dyn., 1984, 7, (5), pp. 596602.
    25. 25)
      • 9. Fox, D.: ‘KLD-sampling: adaptive particle filter’, Adv. Neural Inf. Process. Syst., 2002, 14, pp. 713720.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5043
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address