http://iet.metastore.ingenta.com
1887

MIMO array for short-range, high-resolution automotive sensing

MIMO array for short-range, high-resolution automotive sensing

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The study introduces the concept of multiple input–multiple output (MIMO) radar or sonar arrays for short-range, high-resolution sensing in vehicular applications. The use of a MIMO architecture, which is becoming increasingly popular in this field, is selected to reduce the amount of physical elements in the array needed for beamforming, but also to allow signal processing approaches for forming narrow beams in the near-field of the array. The study analytically derives the proposed signal processing approach, and then verifies it via simulated and experimental data in a laboratory environment with scientific equipment assembled for this purpose.

References

    1. 1)
      • 1. Sit, Y.L., Nguyen, T.T., Sturm, C., et al: ‘2D radar imaging with velocity estimation using a MIMO OFDM-based radar for automotive applications’. 2013 European Radar Conf. (EuRAD), Nuremberg, Germany, 2013, pp. 145148.
    2. 2)
      • 2. Iwasa, K., Kishigami, T., Yomo, H., et al: ‘MIMO radar system using orthogonal complementary codes with Doppler offset’. 2017 European Radar Conf. (EURAD), Nuremberg, Germany, 2017, pp. 102105.
    3. 3)
      • 3. Harter, M., Hildebrandt, J., Ziroff, A., et al: ‘Self-calibration of a 3-D-digital beamforming radar system for automotive applications with installation behind automotive covers’, IEEE Trans. Microw. Theory Tech., 2016, 64, (9), pp. 29943000. [Online]. Available at: http://ieeexplore.ieee.org/document/7536163/, accessed 5 March 2018.
    4. 4)
      • 4. Guermandi, D., Shi, Q., Dewilde, A., et al: ‘A 79-GHz 2 $\times $ 2 MIMO PMCW radar SoC in 28-nm CMOS’, IEEE J. Solid-State Circuits, 2017, 52, (10), pp. 26132626. [Online]. Available at: http://ieeexplore.ieee.org/document/7997699/, accessed 5 March 2018].
    5. 5)
      • 5. Vasanelli, C., Batra, R., Serio, A.D., et al: ‘Assessment of a millimeter-wave antenna system for MIMO radar applications’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 12611264. [Online]. Available at: http://ieeexplore.ieee.org/document/7752791/, accessed 5 March 2018.
    6. 6)
      • 6. Engels, F., Wintermantel, M., Heidenreich, P.: ‘Automotive MIMO radar angle estimation in the presence of multipath’.
    7. 7)
      • 7. Khomchuk, P., Stainvas, I., Bilik, I.: ‘Pedestrian motion direction estimation using simulated automotive MIMO radar’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (3), pp. 11321145. [Online]. Available at: http://ieeexplore.ieee.org/document/7511847/, accessed 5 March 2018.
    8. 8)
      • 8. Sommer, A., Ngo, T. T., Ostermann, J.: ‘3D multiple input single output near field automotive synthetic aperture radar’. 2017 18th Int. Radar Symp. (IRS), Prague, Czech Republic, 2017, pp. 110.
    9. 9)
      • 9. Vasanelli, C., Batra, R., Waldschmidt, C.: ‘Optimization of a MIMO radar antenna system for automotive applications’. 2017 11th European Conf. on Antennas and Propagation (EUCAP), Paris, France, 2017, pp. 11131117.
    10. 10)
      • 10. Swami, P., Jain, A., Goswami, P., et al: ‘High performance automotive radar signal processing on TI's TDA3X platform’. 2017 IEEE Radar Conf. (RadarConf), Seattle, WA, USA, 2017, pp. 13171320.
    11. 11)
      • 11. Pfeffer, C., Feger, R., Wagner, C., et al: ‘FMCW MIMO radar system for frequency-division multiple TX-beamforming’, IEEE Trans. Microw. Theory Tech., 2013, 61, (12), pp. 42624274. [Online]. Available at: http://ieeexplore.ieee.org/document/6670120/, accessed 5 March 2018.
    12. 12)
      • 12. Feger, R., Pfeffer, C., Stelzer, A.: ‘A frequency-division MIMO FMCW radar system based on delta–sigma modulated transmitters’, IEEE Trans. Microw. Theory Tech., 2014, 62, (12), pp. 35723581. [Online]. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6937213, accessed 5 March 2018.
    13. 13)
      • 13. TEF810X fully-integrated 77 GHz radar transceiver|NXP’. [Online]. Available at: https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X, accessed 26 February 2018.
    14. 14)
      • 14. AWR1642 single-chip 76-to-81 GHz automotive radar sensor integrating DSP and MCU | TI.com’. [Online]. Available at: http://www.ti.com/product/AWR1642, accessed 26 February 2018.
    15. 15)
      • 15. Zhen, Y., Wei, L., Qinggong, C., et al: ‘Design of a near-field radar imaging system based on MIMO array’. 2015 12th IEEE Int. Conf. on Electronic Measurement & Instruments (ICEMI), Qingdao, China, 2015, vol. 3, pp. 12651269. [Online]. Available at: http://ieeexplore.ieee.org/abstract/document/7494513/, accessed 4 September 2017.
    16. 16)
      • 16. Spreng, T., Prechtel, U., Schonlinner, B., et al: ‘UWB near-field MIMO radar: calibration, measurements and image reconstruction’. 2013 European Radar Conf. (EuRAD), Nuremberg, Germany, 2013, pp. 3336. [Online]. Available at: http://ieeexplore.ieee.org/abstract/document/6689106/, accessed 4 September 2017.
    17. 17)
      • 17. Wirth, W.-D., Institution of Electrical Engineers: ‘Radar techniques using array antennas’ (Institution of Electrical Engineers, London, 2001).
    18. 18)
      • 18. Hansen, R.C.: ‘Phased array antennas’ (Wiley, Hoboken, NJ, 2009, 2nd edn.).
    19. 19)
      • 19. Richards, M.A., Scheer, J.A., Holm, W.A.: ‘Principles of modern radar. vol. 2’ (SciTech Pub., Raleigh, NC, 2010), vol. 2.
    20. 20)
      • 20. Balanis, C.A.: ‘Antenna theory: analysis and design’ (John Wiley, Hoboken, NJ, 2005, 3rd edn.).
    21. 21)
      • 21. Richards, M.A., Scheer, J., Holm, W.A., Melvin, W.L. (Eds.): ‘Principles of modern radar’ (SciTech Pub, Raleigh, NC, 2010), pp. 327328.
    22. 22)
      • 22. Li, J., Stoica, P. (Eds.): ‘MIMO radar signal processing’ (J. Wiley & Sons, Hoboken, NJ, 2009), pp. 137138.
    23. 23)
      • 23. Yegulalp, A. F.: ‘Fast backprojection algorithm for synthetic aperture radar’. Radar Conf., 1999. The Record of the 1999 IEEE, Waltham, MA, USA, 1999, pp. 6065.
    24. 24)
      • 24. Kennedy, R.A., Abhayapala, T., Ward, D.B., et al: ‘Nearfield broadband frequency invariant beamforming’. 1996 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conf. Proc., Atlanta, GA, USA, 1996, vol. 2, pp. 905908. [Online]. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=543268, accessed 11 August 2014.
    25. 25)
      • 25. Kennedy, R.A., Ward, D.B., Abhayapala, P.T.D.: ‘Nearfield beamforming using nearfield/farfield reciprocity’. 1997 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 1997. ICASSP-97, Munich, Germany, 1997, vol. 5, pp. 37413744. [Online]. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=604683, accessed 11 August 2014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5031
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5031
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address