Multibeam radar based on linear frequency modulated waveform diversity

Multibeam radar based on linear frequency modulated waveform diversity

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multibeam radar (MBR) systems based on waveform diversity require a set of orthogonal waveforms in order to generate multiple channels in transmission and extract them efficiently at the receiver with digital signal processing. Linear frequency modulated (LFM) signals are extensively used in radar systems due to their pulse compression properties, Doppler tolerance, and ease of generation. Here, the authors investigate the level of isolation between MBR channels based on LFM chirps with rectangular and Gaussian amplitude envelopes. The orthogonal properties and the mathematical expressions of the isolation are derived as a function of the chirp design diversity, and specifically for diverse frequency slopes and frequency offsets. The analytical expressions are validated with a set of simulations as well as with experiments at C-band using a rotating target.

Related content

This is a required field
Please enter a valid email address