This is an open access article published by the IET under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/)
Full text loading...
/deliver/fulltext/iet-rsn/12/10/IET-RSN.2018.5024.html;jsessionid=bkcb7s0eu9i65.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-rsn.2018.5024&mimeType=html&fmt=ahah
References
-
-
1)
-
2)
-
3)
-
3. Sturm, C., Li, G, Lübbert, U.: ‘79 GHz automotive radar and its opportunities for frequency and bandwidth agile operation’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017, pp. 1–6.
-
4)
-
4. Jasteh, D., Hoare, E.G., Cherniakov, M., et al: ‘Experimental low-terahertz radar image analysis for automotive terrain sensing’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (4), pp. 490–494.
-
5)
-
5. Stove, A.: ‘Potential applications for low-tera-hertz radar’. 2015 16th Int. Radar Symp. (IRS), 2015, pp. 191–196.
-
6)
-
6. Beckmann, P., Spizzichino, A.: ‘The scattering of electromagnetic waves from rough surfaces’ (Artech house, Norwood, MA, 1987).
-
7)
-
7. Willetts, B., Gashinova, M., Stove, A., et al: ‘Low-THz rough surface imaging’. Proc. 13th European Radar Conf., London, UK, October 2016, pp. 394–397.
-
8)
-
8. Waldschmidt, C., Meinel, H.: ‘Future trends and directions in radar concerning the application for autonomous driving’. 2014 44th European Microwave Conf., Rome, 2014, pp. 1719–1722.
-
9)
-
9. Balanis, C.A.: ‘Advanced engineering electromagnetics’ (John Wiley, Hoboken, NJ, 2012, 2nd edn.).
-
10)
-
10. Bystrov, A., Hoare, E., Tran, T.Y., et al: ‘Automotive surface identification system based on modular neural network architecture’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017, pp. 1–8.
-
11)
-
11. Daniel, L., Phippen, D., Hoare, E., et al: ‘Multi-height radar images of road scenes at 150 GHz’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017.
-
12)
-
12. Liebe, H.J., Layton, D.H.: ‘Millimeter-wave properties of the atmosphere: laboratory studies and propagation modelling’, .
-
13)
-
13. Recommendation ITU-R P.838–3.: ‘Specific atenuation model for rain use in prediction methods’.
-
14)
-
14. Ishii, S., Kinugawa, M., Wakiyama, S., et al: ‘Rain attenuation in the microwave-to-terahertz waveband’, Wirel. Eng. Technol., 2016, 7, pp. 59–66, .
-
15)
-
15. Daniel, L., Phippen, D., Hoare, E., et al: ‘Low-THz radar, lidar and optical imaging through artificially generated fog’. Int. Conf. on Radar Systems (Radar 2017), Belfast, 2017, pp. 1–4.
-
16)
-
16. Wiley, C.A.: ‘Synthetic aperture radars’, IEEE Trans. Aerosp. Electron. Syst., 1985, AES-21, (3), pp. 440–443.
-
17)
-
17. Sun, H., Liu, G., Gu, H., et al: ‘The development of DBS imaging based on airborne pulse Doppler radar in China’, Microw. J., 2001, .
-
18)
-
18. Chen, H., Li, M., Wang, Z., et al: ‘Super-resolution Doppler beam sharpening imaging via sparse representation’, IET Radar, Sonar Navig., 2016, 10, (3), pp. 442–448.
-
19)
-
19. Yang, H., Mao, D., Zhang, Y., et al: ‘Doppler beam sharpening imaging based on fast iterative adaptive approach’. 2017 IEEE Radar Conf. (RadarConf), 2017, pp. 1419–1423.
-
20)
-
20. Qi, L., Zheng, M., Yu, W., et al: ‘Super-resolution Doppler beam sharpening imaging based on an iterative adaptive approach’, Remote Sens. Lett., 2016, 7, (3), pp. 259–268.
-
21)
-
21. Laribi, A., Hahn, M., Dickmann, J., et al: ‘A new height-estimation method using FMCW radar Doppler beam sharpening’. 2017 25th European Signal Processing Conf. (EUSIPCO), Kos, 2017, pp. 1932–1936.
-
22)
-
22. Li, J., Stoica, P.: ‘Efficient mixed-spectrum estimation with applications to target feature extraction’, IEEE Trans. Signal Process., 1996, 44, (2), pp. 281–295.
-
23)
-
23. Tait, P.: ‘Introduction to radar target recognition’ (IET, London, 2005).
-
24)
-
24. Skolnik, M.J.: ‘Radar handbook’ (McGraw-Hill, New York, NY, 2008, 3rd edn.).
-
25)
-
26)
-
26. Slocum, D.M., Slingerland, E.J., Giles, R.H., et al: ‘Atmospheric absorption of terahertz radiation and water vapor continuum effects’, J. Quant. Spectrosc. Radiat. Transfer, 2013, 127, pp. 49–63.
-
27)
-
28)
-
28. Tian, J., Wei, C., Lin, M., et al: ‘DBS imaging based on keystone transform’, J. Syst. Eng. Electron., 2012, 23, pp. 342–348, .
-
29)
-
29. Song, X.Y., Li, Z.F., Bao, Z.: ‘High squint DBS imaging’, Mod. Rad., 2004, 26, pp. 30–33.
-
30)
-
30. Phippen, D., Daniel, L., Gashinova, M., et al: ‘Trilateration of targets using a 300 GHz radar system’. Int. Conf. on Radar systems 2017 (Radar 2017), Belfast, 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5024
Related content
content/journals/10.1049/iet-rsn.2018.5024
pub_keyword,iet_inspecKeyword,pub_concept
6
6