Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Application of Doppler beam sharpening for azimuth refinement in prospective low-THz automotive radars

In this study, the authors investigate the application of the Doppler beam sharpening (DBS) technique for angular refinement to the emerging area of low-terahertz (THz) radar sensing. Ultimately this is to improve radar image quality in the azimuth plane to complement the excellent range resolution and thus improve object classification in low-THz radar imaging systems for autonomous platforms. The study explains the fundamental theory behind the process of DBS and describes the applicability of DBS to automotive sensing, indicating the potential for synthetic beamwidths of a fraction of a degree. Low-THz DBS was experimentally tested under controlled laboratory conditions, not only to accurately localised target objects in Cartesian space but also to provide unique object imaging at low-THz frequencies with wide azimuthal beamwidth antennas. It was shown that a stationary (i.e. non-scanned) wide beam antenna mounted on a moving platform can deliver imagery at least comparable to that produced by physical beamforming, be that steering arrays or narrow beam scanning antennas as in the experimental case presented.

References

    1. 1)
      • 27. IEEE Connected Vechicles. Available at http://sites.ieee.org/connected-vehicles/.
    2. 2)
      • 29. Song, X.Y., Li, Z.F., Bao, Z.: ‘High squint DBS imaging’, Mod. Rad., 2004, 26, pp. 3033.
    3. 3)
      • 11. Daniel, L., Phippen, D., Hoare, E., et al: ‘Multi-height radar images of road scenes at 150 GHz’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017.
    4. 4)
      • 26. Slocum, D.M., Slingerland, E.J., Giles, R.H., et al: ‘Atmospheric absorption of terahertz radiation and water vapor continuum effects’, J. Quant. Spectrosc. Radiat. Transfer, 2013, 127, pp. 4963.
    5. 5)
      • 24. Skolnik, M.J.: ‘Radar handbook’ (McGraw-Hill, New York, NY, 2008, 3rd edn.).
    6. 6)
      • 17. Sun, H., Liu, G., Gu, H., et al: ‘The development of DBS imaging based on airborne pulse Doppler radar in China’, Microw. J., 2001, Available at http://www.microwavejournal.com/articles/3143-the-development-of-dbs-imaging-based-on-airborne-pulse-doppler-radar-in-china.
    7. 7)
      • 23. Tait, P.: ‘Introduction to radar target recognition’ (IET, London, 2005).
    8. 8)
      • 4. Jasteh, D., Hoare, E.G., Cherniakov, M., et al: ‘Experimental low-terahertz radar image analysis for automotive terrain sensing’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (4), pp. 490494.
    9. 9)
      • 7. Willetts, B., Gashinova, M., Stove, A., et al: ‘Low-THz rough surface imaging’. Proc. 13th European Radar Conf., London, UK, October 2016, pp. 394397.
    10. 10)
      • 13. Recommendation ITU-R P.838–3.: ‘Specific atenuation model for rain use in prediction methods’.
    11. 11)
      • 16. Wiley, C.A.: ‘Synthetic aperture radars’, IEEE Trans. Aerosp. Electron. Syst., 1985, AES-21, (3), pp. 440443.
    12. 12)
      • 12. Liebe, H.J., Layton, D.H.: ‘Millimeter-wave properties of the atmosphere: laboratory studies and propagation modelling’, NTIA Report 87–224, U.S. Department of Commerce.
    13. 13)
      • 25. Bosch MMR: Available at https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/predictive-emergency-braking-system/mid-range-radar-sensor-(mrr)/.
    14. 14)
      • 19. Yang, H., Mao, D., Zhang, Y., et al: ‘Doppler beam sharpening imaging based on fast iterative adaptive approach’. 2017 IEEE Radar Conf. (RadarConf), 2017, pp. 14191423.
    15. 15)
      • 5. Stove, A.: ‘Potential applications for low-tera-hertz radar’. 2015 16th Int. Radar Symp. (IRS), 2015, pp. 191196.
    16. 16)
      • 10. Bystrov, A., Hoare, E., Tran, T.Y., et al: ‘Automotive surface identification system based on modular neural network architecture’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017, pp. 18.
    17. 17)
      • 30. Phippen, D., Daniel, L., Gashinova, M., et al: ‘Trilateration of targets using a 300 GHz radar system’. Int. Conf. on Radar systems 2017 (Radar 2017), Belfast, 2017.
    18. 18)
      • 8. Waldschmidt, C., Meinel, H.: ‘Future trends and directions in radar concerning the application for autonomous driving’. 2014 44th European Microwave Conf., Rome, 2014, pp. 17191722.
    19. 19)
      • 3. Sturm, C., Li, G, Lübbert, U.: ‘79 GHz automotive radar and its opportunities for frequency and bandwidth agile operation’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017, pp. 16.
    20. 20)
      • 14. Ishii, S., Kinugawa, M., Wakiyama, S., et al: ‘Rain attenuation in the microwave-to-terahertz waveband’, Wirel. Eng. Technol., 2016, 7, pp. 5966, doi: 10.4236/wet.2016.72006.
    21. 21)
      • 9. Balanis, C.A.: ‘Advanced engineering electromagnetics’ (John Wiley, Hoboken, NJ, 2012, 2nd edn.).
    22. 22)
      • 15. Daniel, L., Phippen, D., Hoare, E., et al: ‘Low-THz radar, lidar and optical imaging through artificially generated fog’. Int. Conf. on Radar Systems (Radar 2017), Belfast, 2017, pp. 14.
    23. 23)
      • 21. Laribi, A., Hahn, M., Dickmann, J., et al: ‘A new height-estimation method using FMCW radar Doppler beam sharpening’. 2017 25th European Signal Processing Conf. (EUSIPCO), Kos, 2017, pp. 19321936.
    24. 24)
      • 6. Beckmann, P., Spizzichino, A.: ‘The scattering of electromagnetic waves from rough surfaces’ (Artech house, Norwood, MA, 1987).
    25. 25)
      • 1. https://www.gov.uk/government/organisations/centre-for-connected-and-autonomous-vehicles.
    26. 26)
      • 18. Chen, H., Li, M., Wang, Z., et al: ‘Super-resolution Doppler beam sharpening imaging via sparse representation’, IET Radar, Sonar Navig., 2016, 10, (3), pp. 442448.
    27. 27)
      • 20. Qi, L., Zheng, M., Yu, W., et al: ‘Super-resolution Doppler beam sharpening imaging based on an iterative adaptive approach’, Remote Sens. Lett., 2016, 7, (3), pp. 259268.
    28. 28)
      • 22. Li, J., Stoica, P.: ‘Efficient mixed-spectrum estimation with applications to target feature extraction’, IEEE Trans. Signal Process., 1996, 44, (2), pp. 281295.
    29. 29)
      • 2. ETSI EN 302 264-1.: ‘Electromagnetic compatibility and radio spectrum matters (ERM); short range devices; road transport and traffic telematics (RTTT); short range radar equipment operating in the 77 GHz to 81 GHz band’. Available at http://www.etsi.org.
    30. 30)
      • 28. Tian, J., Wei, C., Lin, M., et al: ‘DBS imaging based on keystone transform’, J. Syst. Eng. Electron., 2012, 23, pp. 342348, 10.1109/JSEE.2012.00042.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5024
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address