http://iet.metastore.ingenta.com
1887

access icon openaccess Application of Doppler beam sharpening for azimuth refinement in prospective low-THz automotive radars

Loading full text...

Full text loading...

/deliver/fulltext/iet-rsn/12/10/IET-RSN.2018.5024.html;jsessionid=1q4b473er3yvf.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-rsn.2018.5024&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. https://www.gov.uk/government/organisations/centre-for-connected-and-autonomous-vehicles.
    2. 2)
      • 2. ETSI EN 302 264-1.: ‘Electromagnetic compatibility and radio spectrum matters (ERM); short range devices; road transport and traffic telematics (RTTT); short range radar equipment operating in the 77 GHz to 81 GHz band’. Available at http://www.etsi.org.
    3. 3)
      • 3. Sturm, C., Li, G, Lübbert, U.: ‘79 GHz automotive radar and its opportunities for frequency and bandwidth agile operation’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017, pp. 16.
    4. 4)
      • 4. Jasteh, D., Hoare, E.G., Cherniakov, M., et al: ‘Experimental low-terahertz radar image analysis for automotive terrain sensing’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (4), pp. 490494.
    5. 5)
      • 5. Stove, A.: ‘Potential applications for low-tera-hertz radar’. 2015 16th Int. Radar Symp. (IRS), 2015, pp. 191196.
    6. 6)
      • 6. Beckmann, P., Spizzichino, A.: ‘The scattering of electromagnetic waves from rough surfaces’ (Artech house, Norwood, MA, 1987).
    7. 7)
      • 7. Willetts, B., Gashinova, M., Stove, A., et al: ‘Low-THz rough surface imaging’. Proc. 13th European Radar Conf., London, UK, October 2016, pp. 394397.
    8. 8)
      • 8. Waldschmidt, C., Meinel, H.: ‘Future trends and directions in radar concerning the application for autonomous driving’. 2014 44th European Microwave Conf., Rome, 2014, pp. 17191722.
    9. 9)
      • 9. Balanis, C.A.: ‘Advanced engineering electromagnetics’ (John Wiley, Hoboken, NJ, 2012, 2nd edn.).
    10. 10)
      • 10. Bystrov, A., Hoare, E., Tran, T.Y., et al: ‘Automotive surface identification system based on modular neural network architecture’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017, pp. 18.
    11. 11)
      • 11. Daniel, L., Phippen, D., Hoare, E., et al: ‘Multi-height radar images of road scenes at 150 GHz’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017.
    12. 12)
      • 12. Liebe, H.J., Layton, D.H.: ‘Millimeter-wave properties of the atmosphere: laboratory studies and propagation modelling’, NTIA Report 87–224, U.S. Department of Commerce.
    13. 13)
      • 13. Recommendation ITU-R P.838–3.: ‘Specific atenuation model for rain use in prediction methods’.
    14. 14)
      • 14. Ishii, S., Kinugawa, M., Wakiyama, S., et al: ‘Rain attenuation in the microwave-to-terahertz waveband’, Wirel. Eng. Technol., 2016, 7, pp. 5966, doi: 10.4236/wet.2016.72006.
    15. 15)
      • 15. Daniel, L., Phippen, D., Hoare, E., et al: ‘Low-THz radar, lidar and optical imaging through artificially generated fog’. Int. Conf. on Radar Systems (Radar 2017), Belfast, 2017, pp. 14.
    16. 16)
      • 16. Wiley, C.A.: ‘Synthetic aperture radars’, IEEE Trans. Aerosp. Electron. Syst., 1985, AES-21, (3), pp. 440443.
    17. 17)
      • 17. Sun, H., Liu, G., Gu, H., et al: ‘The development of DBS imaging based on airborne pulse Doppler radar in China’, Microw. J., 2001, Available at http://www.microwavejournal.com/articles/3143-the-development-of-dbs-imaging-based-on-airborne-pulse-doppler-radar-in-china.
    18. 18)
      • 18. Chen, H., Li, M., Wang, Z., et al: ‘Super-resolution Doppler beam sharpening imaging via sparse representation’, IET Radar, Sonar Navig., 2016, 10, (3), pp. 442448.
    19. 19)
      • 19. Yang, H., Mao, D., Zhang, Y., et al: ‘Doppler beam sharpening imaging based on fast iterative adaptive approach’. 2017 IEEE Radar Conf. (RadarConf), 2017, pp. 14191423.
    20. 20)
      • 20. Qi, L., Zheng, M., Yu, W., et al: ‘Super-resolution Doppler beam sharpening imaging based on an iterative adaptive approach’, Remote Sens. Lett., 2016, 7, (3), pp. 259268.
    21. 21)
      • 21. Laribi, A., Hahn, M., Dickmann, J., et al: ‘A new height-estimation method using FMCW radar Doppler beam sharpening’. 2017 25th European Signal Processing Conf. (EUSIPCO), Kos, 2017, pp. 19321936.
    22. 22)
      • 22. Li, J., Stoica, P.: ‘Efficient mixed-spectrum estimation with applications to target feature extraction’, IEEE Trans. Signal Process., 1996, 44, (2), pp. 281295.
    23. 23)
      • 23. Tait, P.: ‘Introduction to radar target recognition’ (IET, London, 2005).
    24. 24)
      • 24. Skolnik, M.J.: ‘Radar handbook’ (McGraw-Hill, New York, NY, 2008, 3rd edn.).
    25. 25)
      • 25. Bosch MMR: Available at https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/predictive-emergency-braking-system/mid-range-radar-sensor-(mrr)/.
    26. 26)
      • 26. Slocum, D.M., Slingerland, E.J., Giles, R.H., et al: ‘Atmospheric absorption of terahertz radiation and water vapor continuum effects’, J. Quant. Spectrosc. Radiat. Transfer, 2013, 127, pp. 4963.
    27. 27)
      • 27. IEEE Connected Vechicles. Available at http://sites.ieee.org/connected-vehicles/.
    28. 28)
      • 28. Tian, J., Wei, C., Lin, M., et al: ‘DBS imaging based on keystone transform’, J. Syst. Eng. Electron., 2012, 23, pp. 342348, 10.1109/JSEE.2012.00042.
    29. 29)
      • 29. Song, X.Y., Li, Z.F., Bao, Z.: ‘High squint DBS imaging’, Mod. Rad., 2004, 26, pp. 3033.
    30. 30)
      • 30. Phippen, D., Daniel, L., Gashinova, M., et al: ‘Trilateration of targets using a 300 GHz radar system’. Int. Conf. on Radar systems 2017 (Radar 2017), Belfast, 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5024
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address