http://iet.metastore.ingenta.com
1887

Photonic approach for on-board and ground radars in automotive applications

Photonic approach for on-board and ground radars in automotive applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

While automotive radars are driving the development of high-performance technologies for remote sensing, pushing radiofrequency systems to higher frequencies, photonics is gradually changing the approach to micro- and millimetre wave RF generation and distribution. With its unique features, photonics can extend the potential of radars, in particular for ground-based traffic surveillance and on-board automotive applications, enhancing traffic safety and enabling the deployment of smart driver-less vehicles. In fact, microwave photonics offers unprecedented flexibility and stability, such as −113 dBc/Hz (at 100 kHz offset frequency) at 80 GHz, with the capability of generating an extremely broad range of carrier frequencies. Moreover, it can employ signals which span up to several GHz of bandwidth, thus allowing higher precision in target detection and discrimination. This study compares photonic and electronic technologies, and it demonstrates, through simulation results, the benefits of a multiple input, multiple output photonic radar when applied to automotive case-study scenarios.

References

    1. 1)
      • 1. ‘Selling autos by selling safety’, The New York Times, January 1990. Available at http://www.nytimes.com/1990/01/26/business/selling-autos-by-sellingsafety.html.
    2. 2)
      • 2. Menzel, W.: ‘Millimeter-wave radar for civil applications’. Proc. of the 7th European Radar Conf., Paris, France, September 2010.
    3. 3)
      • 3. Köhler, M., Hasch, J., Blöcher, H.L., et al: ‘Feasibility of automotive radar at frequencies beyond 100 GHz’, Int. J. Microw. Wirel. Technol., 2013, 5, (1), pp. 4954.
    4. 4)
      • 4. Nicolson, S.T., Chevalier, P., Sautreuil, B., et al: ‘Single-chip W-band SiGe HBT transceivers and receivers for Doppler radar and millimeter-wave imaging’, IEEE J. Solid-State Circuits, 2008, 43, (10), pp. 22062217.
    5. 5)
      • 5. Forstner, H.P., Knapp, H., Jager, H., et al: ‘A 77 GHz 4-channel automotive radar transceiver in SiGe’. 2008 IEEE Radio Frequency Integrated Circuits Symp., Atlanta, GA, USA, June 2008, pp. 233236.
    6. 6)
      • 6. Mitomo, T., Ono, N., Hoshino, H., et al: ‘A 77 GHz 90 nm CMOS transceiver for FMCW radar applications’, IEEE J. Solid-State Circuits, 2010, 45, (4), pp. 928937.
    7. 7)
      • 7. Scuderi, A., Ragonese, E., Palmisano, G.: ‘24-GHz ultra-wideband transmitter for vehicular short-range radar applications’, IET Circuits Devices Syst., 2009, 3, (6), pp. 313321.
    8. 8)
      • 8. Ragonese, E., Scuderi, A., Giammello, V., et al: ‘A SiGe BiCMOS 24-GHz receiver front-end for automotive short-range radar’, Analog Integr. Circuits Signal Process., 2011, 67, (2), pp. 121130.
    9. 9)
      • 9. Trotta, S., Wintermantel, M., Dixon, J., et al: ‘An RCP packaged transceiver chipset for automotive LRR and SRR systems in SiGe BiCMOS technology’, IEEE Trans. Microw. Theory Tech., 2012, 60, (3), pp. 778794.
    10. 10)
      • 10. Winkler, W., Debski, W., Genschow, D., et al: ‘24 GHz transceiver front-end with two Rx-channels’. The 7th German Microwave Conf., Ilmenau, Germany, March 2012, pp. 14.
    11. 11)
      • 11. Bredendiek, C., Pohl, N., Jaeschke, T., et al: ‘A 24 GHz wideband single-channel SiGe bipolar transceiver chip for monostatic FMCW radar systems’. 2012 7th European Microwave Integrated Circuit Conf., Amsterdam, Netherlands, October 2012, pp. 309312.
    12. 12)
      • 12. Infineon: ‘BGT24ATR11 – silicon germanium 24 GHz transceiver MMIC’. Available at https://www.infineon.com/dgdl/Infineon-BGT24ATR11-DS-v03_00-EN.pdf?fileId=5546d462518ffd8501519faf62592796, accessed August 2018.
    13. 13)
      • 13. Takeda, Y., Fujibayashi, T., Yeh, Y.-S., et al: ‘A 76- to 81-GHz transceiver chipset for long-range and short-range automotive radar’. 2014 IEEE MTT-S Int. Microwave Symp. (IMS2014), Tampa, FL, USA, June 2014, pp. 13.
    14. 14)
      • 14. Guermandi, D., Shi, Q., Medra, A., et al: ‘A 79 GHz binary phase-modulated continuous-wave radar transceiver with Tx-to-Rx spillover cancellation in 28 nm CMOS’. 2015 IEEE Int. Solid-State Circuits Conf. (ISSCC) – Digest of Technical Papers, San Francisco, CA, USA, February 2015, pp. 13.
    15. 15)
      • 15. Fujibayashi, T., Takeda, Y., Wang, W., et al: ‘A 76- to 81-GHz packaged singlechip transceiver for automotive radar’. 2016 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), New Brunswick, NJ, USA, September 2016, pp. 166169.
    16. 16)
      • 16. Wu, P.Y., Kijsanayotin, T., Buckwalter, J.F.: ‘A 71–86-GHz switchless asymmetric bidirectional transceiver in a 90-nm SiGe BiCMOS’, IEEE Trans. Microw. Theory Tech., 2016, 64, (12), pp. 42624273.
    17. 17)
      • 17. Texas Instruments: ‘AWR1243 – single-chip 77- and 79-GHz FMCW transceiver’. Available at http://www.ti.com/product/AWR1243/datasheet/abstract#x2481, accessed August 2018.
    18. 18)
      • 18. European Telecommunications Standards Institute: ‘ETSI EN 302 264-1 V1.1.1’, June 2009.
    19. 19)
      • 19. European Telecommunications Standards Institute: ‘ETSI EN 302 288-1 V1.6.1’, March 2012.
    20. 20)
      • 20. Vasanelli, C., Batra, R., Waldschmidt, C.: ‘Optimization of a MIMO radar antenna system for automotive applications’. 2017 11th European Conf. on Antennas and Propagation (EUCAP), Paris, France, March 2017, pp. 11131117.
    21. 21)
      • 21. Lutz, S., Baur, K., Walter, T.: ‘77 GHz lens-based multistatic MIMO radar with colocated antennas for automotive applications’. 2012 IEEE/MTT-S Int. Microwave Symp. Digest, Montreal, QC, Canada, June 2012, pp. 13.
    22. 22)
      • 22. Bilik, I., Bialer, O., Villeval, S., et al: ‘Automotive MIMO radar for urban environments’. 2016 IEEE Radar Conf. (RadarConf), Philadelphia, PA, USA, May 2016, pp. 16.
    23. 23)
      • 23. Serafino, G., Ghelfi, P., Perez-Millan, P., et al: ‘Phase and amplitude stability of EHF-band radar carriers generated from an active mode-locked laser’, J. Lightwave Technol., 2011, 29, (23), pp. 35513559.
    24. 24)
      • 24. Company, V.T., Weiner, A.M.: ‘Optical frequency comb technology for ultrabroadband radio-frequency photonics’, Laser Photonics Rev., 2014, 8, (3), pp. 368393.
    25. 25)
      • 25. Xie, X., Zhang, C., Sun, T., et al: ‘Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter’, Opt. Lett., 2013, 38, (5), pp. 655657.
    26. 26)
      • 26. Scotti, F., Laghezza, F., Onori, D., et al: ‘Field trial of a photonics-based dual-band fully coherent radar system in a maritime scenario’, IET Radar Sonar Navig., 2017, 11, (3), pp. 420425.
    27. 27)
      • 27. Melo, S., Pinna, S., Bogoni, A., et al: ‘Dual-use system combining simultaneous active radar communication, based on a single photonics-assisted transceiver’. 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, May 2016.
    28. 28)
      • 28. Ghelfi, P., Laghezza, F., Scotti, F., et al: ‘A fully photonics-based coherent radar system’, Nature, 2010, 507, pp. 341345.
    29. 29)
      • 29. Yu, J., Jia, Z., Wang, T., et al: ‘Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation’, IEEE Photonics Technol. Lett., 2007, 19, (19), pp. 14991501.
    30. 30)
      • 30. Nanzer, J.A., Callahan, P., Dennis, M., et al: ‘Photonic signal generation for millimeter- wave communications’, Johns Hopkins APL Tech. Dig., 2012, 30, (4), pp. 299308.
    31. 31)
      • 31. Maleki, L., Sariri, K., Iltchenko, V.: ‘Opto-electronic oscillator including a tunable electro-optic filter’, 1980, Patent US6928091B1 (US Grant).
    32. 32)
      • 32. Valley, G.: ‘Photonic analog-to-digital converters’, Opt. Express, 2007, 15, (5), pp. 19551982.
    33. 33)
      • 33. Juodawlkis, P.W., Twichell, J.C., Betts, G.E., et al: ‘Optically sampled analogto- digital converters’, IEEE Trans. Microw. Theory Tech., 2001, 49, (10), pp. 18401853.
    34. 34)
      • 34. Chou, J., Conway, J., Sefler, G., et al: ‘150 GS/s real-time oscilloscope using a photonic front end’. Int. Topical Meeting on Microwave Photonics, Gold Coast, Queensland, Australia, 2008.
    35. 35)
      • 35. Bohémond, C., Rampone, T., Sharaih, A.: ‘Performances of a photonic microwave mixer based on cross-gain modulation in a semiconductor optical amplifier’, IEEE J. Lightwave Technol., 2011, 29, (16), pp. 24022409.
    36. 36)
      • 36. Laghezza, F., Scotti, F., Ghelfi, P., et al: ‘Photonics-assisted multiband RF transceiver for wireless communications’, IEEE J. Lightwave Technol., 2014, 32, (16), pp. 24022409.
    37. 37)
      • 37. Longbrake, M.: ‘True time-delay beamsteering for radar’. IEEE National Aerospace and Electronics Conf. (NAECON), Dayton, OH, USA, 2012.
    38. 38)
      • 38. Zhuang, L., Roeloffzen, C., Meijerink, A., et al: ‘Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas-part II: experimental prototype’, IEEE J. Lightwave Technol., 2010, 28, (1), pp. 1931.
    39. 39)
      • 39. Falconi, F., Porzi, C., Pinna, S., et al: ‘Fast and linear photonic integrated microwave phase-shifter for 5G beam-steering applications’. Optical Fiber Comm. Conf. (OFC), San Diego, CA, USA, March 2018, pp. 13.
    40. 40)
      • 40. Lutes, G.F.: ‘Experimental optical fiber communications link’, July 1980, pp. 7785, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800024931.pdf.
    41. 41)
      • 41. Williams, P.A., Swann, W.C., Newbury, N.R.: ‘High-stability transfer of an optical frequency over long fiber-optic links’, J. Opt. Soc. Am. B, 2008, 25, (8), pp. 12841293.
    42. 42)
      • 42. Chen, L.R.: ‘Silicon photonics for microwave photonics applications’. 2016 Optical Fiber Communications Conf. and Exhibition (OFC), Anaheim, CA, USA, March 2016.
    43. 43)
      • 43. Wörhoff, K., Heideman, R., Leinse, A., et al: ‘TriPleX: a versatile dielectric photonic platform’, Adv. Opt. Technol., 2015, 4, (2), pp. 189207.
    44. 44)
      • 44. Coldren, L.A.: ‘Photonic integrated circuits for microwave photonics’. 2010 IEEE Int. Topical Meeting on Microwave Photonics, Montreal, QC, Canada, October 2010.
    45. 45)
      • 45. van der Tol, J., Pello, J., Bhat, S., et al: ‘Photonic integration in indium-phosphide membranes on silicon (IMOS)’. Proc. of the Society of Photo-Optical Instrumentation Engineers (SPIE), San Francisco, CA, USA, March 2014, vol. 52.
    46. 46)
      • 46. JePPIX consortium: ‘JePPIX roadmap 2018’. Available at http://www.pics4all.jeppix.eu/public/downloads/Roadmaps/Roadmap_2018_OFC_Preview.pdf, accessed August 2018.
    47. 47)
      • 47. Avenier, G., Diop, M., Chevalier, P., et al: ‘0.13 μm sige BiCMOS technology fully dedicated to mm-wave applications’, IEEE J. Solid-State Circuits, 2009, 44, (9), pp. 23122321.
    48. 48)
      • 48. Lee, J., Li, Y.A., Hung, M.H., et al: ‘A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology’, IEEE J. Solid-State Circuits, 2010, 45, (12), pp. 27462756.
    49. 49)
      • 49. Wagner, C., Böck, J., Wojnowski, M., et al: ‘A 77 GHz automotive radar receiver in a wafer level package’. 2012 IEEE Radio Frequency Integrated Circuits Symp., Montreal, QC, Canada, June 2012, pp. 511514.
    50. 50)
      • 50. Knapp, H., Treml, M., Schinko, A., et al: ‘Three-channel 77 GHz automotive radar transmitter in plastic package’. 2012 IEEE Radio Frequency Integrated Circuits Symp., Montreal, QC, Canada, June 2012, pp. 119122.
    51. 51)
      • 51. Infineon: ‘BGT24ATR12 – silicon germanium 24 GHz transceiver MMIC’. Available at https://www.infineon.com/dgdl/Infineon-BGT24ATR12-DS-v03_01-EN.pdf?fileId=5546d462518ffd8501519fb887c627a6, accessed August 2018.
    52. 52)
      • 52. Cui, C., Kim, S.K., Song, R., et al: ‘A 77-GHz FMCW radar system using on-chip waveguide feeders in 65-nm CMOS’, IEEE Trans. Microw. Theory Tech., 2015, 63, (11), pp. 37363746.
    53. 53)
      • 53. Ghelfi, P., Laghezza, F., Scotti, F., et al: ‘Fully photonics-based radar demonstrator: concept and field trials’. 2015 Optical Fiber Communications Conf. and Exhibition (OFC), Los Angeles, CA, USA, March 2015, pp. 13.
    54. 54)
      • 54. Zhang, F., Guo, Q., Wang, Z., et al: ‘Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging’, Opt. Express, 2017, 25, (14), pp. 1627416281.
    55. 55)
      • 55. Fishler, E., Haimovich, A., Blum, R., et al: ‘MIMO radar: an idea whose time has come’. Proc. of the 2004 IEEE Radar Conf., Philadelphia, PA, USA, April 2004, pp. 7178.
    56. 56)
      • 56. Li, J., Stoica, P.: ‘MIMO radar with colocated antennas’, IEEE Signal Process. Mag., 2007, 24, (5), pp. 106114.
    57. 57)
      • 57. Lehmann, N.H., Haimovich, A.M., Blum, R.S., et al: ‘High resolution capabilities of MIMO radar’. 2006 40th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, October 2006, pp. 2530.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.5017
Loading

Related content

content/journals/10.1049/iet-rsn.2018.5017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address