access icon free Practical classification of different moving targets using automotive radar and deep neural networks

In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre-processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed.

Inspec keywords: recurrent neural nets; radar transmitters; road vehicle radar; electrical engineering computing; radar receivers; radar tracking; object tracking; Doppler radar; object detection; signal classification; microcontrollers; radar detection

Other keywords: radar detection; microDoppler extraction; radar pre-processing; deep neural network; NXP Semiconductors; automotive radar transceiver TEF810X; radar tracking; microcontroller unit SR32R274; recurrent neural network; target classification; residual neural network; convolutional neural network; time 0.5 s

Subjects: Microprocessor chips; Microprocessors and microcomputers; Neural computing techniques; Digital signal processing; Radar equipment, systems and applications; Signal detection; Electrical engineering computing

References

    1. 1)
      • 15. Gashinova, M., Hoare, E., Stove, A.: ‘Predicted sensitivity of a 300 GHz FMCW radar to pedestrians’. 2016 European Radar Conf. (EuRAD), London, 2016, pp. 350353.
    2. 2)
      • 16. Belgiovane, D., Chen, C.C.: ‘Micro-Doppler characteristics of pedestrians and bicycles for automotive radar sensors at 77 GHz’. 2017 11th European Conf. on Antennas and Propagation (EUCAP), Paris, 2017, pp. 29122916.
    3. 3)
      • 32. Khashbat, J., Tsevegjav, T., Myagmarjav, J., et al: ‘Determining the driver's reaction time in the stationary and real-life environments (comparative study)’. 2012 7th Int. Forum on Strategic Technology (IFOST), 2012.
    4. 4)
      • 23. Jokanovic, B., Amin, M.G., Ahmad, F.: ‘Effect of data representations on deep learning in fall detection’. 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janerio, 2016, pp. 15.
    5. 5)
      • 12. Lee, S., Yoon, Y.J., Lee, J.E., et al: ‘Human–vehicle classification using feature-based SVM in 77-GHz automotive FMCW radar’, IET Radar Sonar Navig., 2017, 11, (10), pp. 15891596.
    6. 6)
      • 35. Srivastava, N., Hinton, G., Krizhevsky, A., et al: ‘Dropout: a simple way to prevent neural networks from overfitting’. J. Mach. Learn. Res., 2014, 15, pp. 19291958.
    7. 7)
      • 26. Parashar, K.N., Oveneke, M.C., Rykunov, M., et al: ‘Micro-Doppler feature extraction using convolutional auto-encoders for low latency target classification’. 2017 IEEE Radar Conf. (RadarConf), Seattle, WA, 2017, pp. 17391744.
    8. 8)
      • 29. Klarenbeek, G., Harmanny, R.I.A., Cifola, L.: ‘Multi-target human gait classification using LSTM recurrent neural networks applied to micro-Doppler’. 2017 European Radar Conf. (EURAD), Nuremberg, 2017, pp. 167170.
    9. 9)
      • 8. Saebboe, J., Viikari, V., Varpula, T., et al: ‘Harmonic automotive radar for VRU classification’. 2009 Int. Radar Conf. on ‘Surveillance for a Safer World’ (RADAR 2009), Bordeaux, 2009, pp. 15.
    10. 10)
      • 5. Hasch, J.: ‘Driving towards 2020: automotive radar technology trends’. 2015 IEEE MTT-S Int. Conf. on Microwaves for Intelligent Mobility (ICMIM), Heidelberg, 2015, pp. 14.
    11. 11)
      • 18. Stolz, M., Schubert, E., Meinl, F., et al: ‘Multi-target reflection point model of cyclists for automotive radar’. 2017 European Radar Conf. (EURAD), Nuremberg, 2017, pp. 9497.
    12. 12)
      • 11. Lee, J., Kim, D., Jeong, S., et al: ‘Target classification scheme using phase characteristics for automotive FMCW radar’. IET Electron. Lett., 2016, 52, (25), pp. 20612063.
    13. 13)
      • 2. SAE International: ‘Taxonomy and definitions for terms related to driving automation systems for On-road motor vehicles’. Available athttp://standards.sae.org/j3016_201609/, 2016, accessed February 2018.
    14. 14)
      • 25. Seyfioğlu, M.S., Gürbüz, S.Z., Özbayoğlu, A.M., et al: ‘Deep learning of micro-Doppler features for aided and unaided gait recognition’. 2017 IEEE Radar Conf. (RadarConf), Seattle, WA, 2017, pp. 11251130.
    15. 15)
      • 10. Schubert, E., Meinl, F., Kunert, M., et al: ‘Clustering of high-resolution automotive radar detections and subsequent feature extraction for classification of road users’. 2015 16th Int. Radar Symp. (IRS), 2015, pp. 174179.
    16. 16)
      • 19. Tahmoush, D.: ‘Review of micro-Doppler signatures’, IET Radar Sonar Navig., 2015, 9, (9), pp. 11401146.
    17. 17)
      • 28. Trommel, R.P., Harmanny, R.I.A., Cifola, L., et al: ‘Multi-target human gait classification using deep convolutional neural networks on micro-Doppler spectrograms’. Radar Conf. (EuRAD), 2016 European, 2016, pp. 8184.
    18. 18)
      • 34. Munkres, J.: ‘Algorithms for the assignment and transportation problems’, J. Soc. Ind. Appl. Math., 1957, 5, (1), pp. 3238.
    19. 19)
      • 24. Jokanovic, B., Amin, M., Erol, B.: ‘Multiple joint-variable domains recognition of human motion’. 2017 IEEE Radar Conf. (RadarConf), Seattle, WA, 2017, pp. 09480952.
    20. 20)
      • 22. Jokanović, B., Amin, M.: ‘Fall detection using deep learning in range-Doppler radars’, IEEE Trans. Aerosp. Electron. Syst., PP, (99), 2018, 52, (1), pp. 180189.
    21. 21)
      • 30. Patel, J.S., Fioranelli, F., Ritchie, M., et al: ‘Multistatic radar classification of armed vs unarmed personnel using neural networks’, Evol. Syst., 2017, pp. 110.
    22. 22)
      • 3. Expect the unexpected – an IET transport sector report on the unintended consequences of connected and autonomous vehicles’ (Institution of Engineering and Technology, 2017) accessed February 2018.
    23. 23)
      • 6. Heuel, S., Rohling, H.: ‘Two-stage pedestrian classification in automotive radar systems’. 2011 12th Int. Radar Symp. (IRS), 2011, pp. 477484.
    24. 24)
      • 37. Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network training by reducing internal covariate shift’, arXiv:1502.03167v3.
    25. 25)
      • 27. Seyfioğlu, M.S., Gürbüz, S.Z.: ‘Deep neural network initialization methods for micro-Doppler classification with low training sample support’, IEEE Geosci. Remote Sens. Lett., 2017, 14, (12), pp. 24622466.
    26. 26)
      • 7. Heuel, S., Rohling, H.: ‘Two-stage pedestrian classification in automotive radar systems’. 2012 13th Int. Radar Symp. (IRS), 2012, pp. 3944.
    27. 27)
      • 13. Marchetti, E., Du, R., Noruzian, F., et al: ‘Radar reflectivity and motion characteristics of pedestrians at 300 GHz’. 2017 European Radar Conf. (EURAD), Nuremberg, 2017, pp. 5760.
    28. 28)
      • 21. Kim, Y., Moon, T.: ‘Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (1), pp. 812.
    29. 29)
      • 20. Fioranelli, F., Ritchie, M., Gürbüz, S., et al: ‘Feature diversity for optimized human micro-Doppler classification using multistatic radar’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (2), pp. 640654.
    30. 30)
      • 33. Rohling, H.: ‘Radar CFAR thresholding in clutter and multiple target situations’, IEEE Trans. Aerosp. Electron. Syst., 1983, AES-19, (4), pp. 608621.
    31. 31)
      • 9. Sorowka, P., Rohling, H.: ‘Pedestrian classification with 24 GHz chirp sequence radar’. 2015 16th Int. Radar Symp. (IRS), 2015, pp. 167173.
    32. 32)
      • 36. Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput., 1997, 9, pp. 17351780.
    33. 33)
      • 31. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’, arXiv:1512.03385, 2015.
    34. 34)
      • 17. Belgiovane, D., Chen, C.C.: ‘Bicycles and human riders backscattering at 77 GHz for automotive radar’. 2016 10th European Conf. on Antennas and Propagation (EuCAP), Davos, 2016, pp. 15.
    35. 35)
      • 1. Jenn, U.: ‘The road to driverless cars: 1925–2025’. Available athttp://www.engineering.com/DesignerEdge/DesignerEdgeArticles/ArticleID/12665/The-Road-to-Driverless-Cars-1925-2025.aspx, 2016, accessed February 2018.
    36. 36)
      • 4. ‘Radar, camera, lidar, and V2X for autonomous cars’. Available athttps://blog.nxp.com/automotive/radar-camera-and-lidar-for-autonomous-cars, 2017, accessed February 2018.
    37. 37)
      • 14. Marchetti, E., Du, R., Noruzian, F., et al: ‘Comparison of pedestrian reflectivities at 24 and 300 GHz’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.0103
Loading

Related content

content/journals/10.1049/iet-rsn.2018.0103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading