http://iet.metastore.ingenta.com
1887

Practical classification of different moving targets using automotive radar and deep neural networks

Practical classification of different moving targets using automotive radar and deep neural networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre-processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed.

References

    1. 1)
      • 1. Jenn, U.: ‘The road to driverless cars: 1925–2025’. Available athttp://www.engineering.com/DesignerEdge/DesignerEdgeArticles/ArticleID/12665/The-Road-to-Driverless-Cars-1925-2025.aspx, 2016, accessed February 2018.
    2. 2)
      • 2. SAE International: ‘Taxonomy and definitions for terms related to driving automation systems for On-road motor vehicles’. Available athttp://standards.sae.org/j3016_201609/, 2016, accessed February 2018.
    3. 3)
      • 3. Expect the unexpected – an IET transport sector report on the unintended consequences of connected and autonomous vehicles’ (Institution of Engineering and Technology, 2017) accessed February 2018.
    4. 4)
      • 4. ‘Radar, camera, lidar, and V2X for autonomous cars’. Available athttps://blog.nxp.com/automotive/radar-camera-and-lidar-for-autonomous-cars, 2017, accessed February 2018.
    5. 5)
      • 5. Hasch, J.: ‘Driving towards 2020: automotive radar technology trends’. 2015 IEEE MTT-S Int. Conf. on Microwaves for Intelligent Mobility (ICMIM), Heidelberg, 2015, pp. 14.
    6. 6)
      • 6. Heuel, S., Rohling, H.: ‘Two-stage pedestrian classification in automotive radar systems’. 2011 12th Int. Radar Symp. (IRS), 2011, pp. 477484.
    7. 7)
      • 7. Heuel, S., Rohling, H.: ‘Two-stage pedestrian classification in automotive radar systems’. 2012 13th Int. Radar Symp. (IRS), 2012, pp. 3944.
    8. 8)
      • 8. Saebboe, J., Viikari, V., Varpula, T., et al: ‘Harmonic automotive radar for VRU classification’. 2009 Int. Radar Conf. on ‘Surveillance for a Safer World’ (RADAR 2009), Bordeaux, 2009, pp. 15.
    9. 9)
      • 9. Sorowka, P., Rohling, H.: ‘Pedestrian classification with 24 GHz chirp sequence radar’. 2015 16th Int. Radar Symp. (IRS), 2015, pp. 167173.
    10. 10)
      • 10. Schubert, E., Meinl, F., Kunert, M., et al: ‘Clustering of high-resolution automotive radar detections and subsequent feature extraction for classification of road users’. 2015 16th Int. Radar Symp. (IRS), 2015, pp. 174179.
    11. 11)
      • 11. Lee, J., Kim, D., Jeong, S., et al: ‘Target classification scheme using phase characteristics for automotive FMCW radar’. IET Electron. Lett., 2016, 52, (25), pp. 20612063.
    12. 12)
      • 12. Lee, S., Yoon, Y.J., Lee, J.E., et al: ‘Human–vehicle classification using feature-based SVM in 77-GHz automotive FMCW radar’, IET Radar Sonar Navig., 2017, 11, (10), pp. 15891596.
    13. 13)
      • 13. Marchetti, E., Du, R., Noruzian, F., et al: ‘Radar reflectivity and motion characteristics of pedestrians at 300 GHz’. 2017 European Radar Conf. (EURAD), Nuremberg, 2017, pp. 5760.
    14. 14)
      • 14. Marchetti, E., Du, R., Noruzian, F., et al: ‘Comparison of pedestrian reflectivities at 24 and 300 GHz’. 2017 18th Int. Radar Symp. (IRS), Prague, 2017, pp. 17.
    15. 15)
      • 15. Gashinova, M., Hoare, E., Stove, A.: ‘Predicted sensitivity of a 300 GHz FMCW radar to pedestrians’. 2016 European Radar Conf. (EuRAD), London, 2016, pp. 350353.
    16. 16)
      • 16. Belgiovane, D., Chen, C.C.: ‘Micro-Doppler characteristics of pedestrians and bicycles for automotive radar sensors at 77 GHz’. 2017 11th European Conf. on Antennas and Propagation (EUCAP), Paris, 2017, pp. 29122916.
    17. 17)
      • 17. Belgiovane, D., Chen, C.C.: ‘Bicycles and human riders backscattering at 77 GHz for automotive radar’. 2016 10th European Conf. on Antennas and Propagation (EuCAP), Davos, 2016, pp. 15.
    18. 18)
      • 18. Stolz, M., Schubert, E., Meinl, F., et al: ‘Multi-target reflection point model of cyclists for automotive radar’. 2017 European Radar Conf. (EURAD), Nuremberg, 2017, pp. 9497.
    19. 19)
      • 19. Tahmoush, D.: ‘Review of micro-Doppler signatures’, IET Radar Sonar Navig., 2015, 9, (9), pp. 11401146.
    20. 20)
      • 20. Fioranelli, F., Ritchie, M., Gürbüz, S., et al: ‘Feature diversity for optimized human micro-Doppler classification using multistatic radar’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (2), pp. 640654.
    21. 21)
      • 21. Kim, Y., Moon, T.: ‘Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (1), pp. 812.
    22. 22)
      • 22. Jokanović, B., Amin, M.: ‘Fall detection using deep learning in range-Doppler radars’, IEEE Trans. Aerosp. Electron. Syst., PP, (99), 2018, 52, (1), pp. 180189.
    23. 23)
      • 23. Jokanovic, B., Amin, M.G., Ahmad, F.: ‘Effect of data representations on deep learning in fall detection’. 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janerio, 2016, pp. 15.
    24. 24)
      • 24. Jokanovic, B., Amin, M., Erol, B.: ‘Multiple joint-variable domains recognition of human motion’. 2017 IEEE Radar Conf. (RadarConf), Seattle, WA, 2017, pp. 09480952.
    25. 25)
      • 25. Seyfioğlu, M.S., Gürbüz, S.Z., Özbayoğlu, A.M., et al: ‘Deep learning of micro-Doppler features for aided and unaided gait recognition’. 2017 IEEE Radar Conf. (RadarConf), Seattle, WA, 2017, pp. 11251130.
    26. 26)
      • 26. Parashar, K.N., Oveneke, M.C., Rykunov, M., et al: ‘Micro-Doppler feature extraction using convolutional auto-encoders for low latency target classification’. 2017 IEEE Radar Conf. (RadarConf), Seattle, WA, 2017, pp. 17391744.
    27. 27)
      • 27. Seyfioğlu, M.S., Gürbüz, S.Z.: ‘Deep neural network initialization methods for micro-Doppler classification with low training sample support’, IEEE Geosci. Remote Sens. Lett., 2017, 14, (12), pp. 24622466.
    28. 28)
      • 28. Trommel, R.P., Harmanny, R.I.A., Cifola, L., et al: ‘Multi-target human gait classification using deep convolutional neural networks on micro-Doppler spectrograms’. Radar Conf. (EuRAD), 2016 European, 2016, pp. 8184.
    29. 29)
      • 29. Klarenbeek, G., Harmanny, R.I.A., Cifola, L.: ‘Multi-target human gait classification using LSTM recurrent neural networks applied to micro-Doppler’. 2017 European Radar Conf. (EURAD), Nuremberg, 2017, pp. 167170.
    30. 30)
      • 30. Patel, J.S., Fioranelli, F., Ritchie, M., et al: ‘Multistatic radar classification of armed vs unarmed personnel using neural networks’, Evol. Syst., 2017, pp. 110.
    31. 31)
      • 31. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’, arXiv:1512.03385, 2015.
    32. 32)
      • 32. Khashbat, J., Tsevegjav, T., Myagmarjav, J., et al: ‘Determining the driver's reaction time in the stationary and real-life environments (comparative study)’. 2012 7th Int. Forum on Strategic Technology (IFOST), 2012.
    33. 33)
      • 33. Rohling, H.: ‘Radar CFAR thresholding in clutter and multiple target situations’, IEEE Trans. Aerosp. Electron. Syst., 1983, AES-19, (4), pp. 608621.
    34. 34)
      • 34. Munkres, J.: ‘Algorithms for the assignment and transportation problems’, J. Soc. Ind. Appl. Math., 1957, 5, (1), pp. 3238.
    35. 35)
      • 35. Srivastava, N., Hinton, G., Krizhevsky, A., et al: ‘Dropout: a simple way to prevent neural networks from overfitting’. J. Mach. Learn. Res., 2014, 15, pp. 19291958.
    36. 36)
      • 36. Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput., 1997, 9, pp. 17351780.
    37. 37)
      • 37. Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network training by reducing internal covariate shift’, arXiv:1502.03167v3.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2018.0103
Loading

Related content

content/journals/10.1049/iet-rsn.2018.0103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address