Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Two-dimensional frequency decoupling method for curved trajectory synthetic aperture radar imaging

Synthetic aperture radar (SAR) imaging with curved trajectory is difficult due to its severe two-dimensional (2D) space variance. When processing the echo with azimuth-variance, the range cell migration and Doppler modulation of the targets with different azimuth locations are different, which brings a big challenge to image formation. Here, a 2D frequency decoupling method for this case is proposed. Firstly, the range history of the curved trajectory is accurately modelled based on fourth-order Taylor series expansion. Then, the 2D point target reference spectrum of the echo signal is obtained by the method of series reversion. The 2D space variance characteristics of two typical cases with curved trajectory, i.e. geosynchronous SAR and missile-borne SAR, are analysed. Based on the space variance characteristics, a 2D frequency decoupling step is implemented to handle the space-variant phase. Simulations are presented to demonstrate the effectiveness of the proposed algorithm.

References

    1. 1)
      • 6. Bamler, R.: ‘A comparison of range-Doppler and wavenumber domain SAR focusing algorithms’, IEEE Trans. Geosci. Remote Sens., 1992, 30, (4), pp. 706713.
    2. 2)
      • 18. Torgrimsson, J., Dammert, P., Hellsten, H., et al: ‘Factorized geometrical autofocus for synthetic aperture radar processing’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (10), pp. 66746687.
    3. 3)
      • 14. Tomiyasu, K., Pacelli, J.L.: ‘Synthetic aperture radar imaging from an inclined geosynchronous orbit’, IEEE Trans. Geosci. Remote Sens., 1983, GE-21, (3), pp. 324329.
    4. 4)
      • 19. Zhang, L., Li, H.L., Qiao, Z.J., et al: ‘A fast BP algorithm with wavenumber spectrum fusion for high-resolution spotlight sar imaging’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (9), pp. 14601464.
    5. 5)
      • 21. Hu, C., Long, T., Liu, Z., et al: ‘An improved frequency domain focusing method in geosynchronous SAR’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (9), pp. 55145528.
    6. 6)
      • 12. Madsen, S., Chen, C., Edelstein, W.: ‘Radar options for global earthquake monitoring’. Geoscience and Remote Sensing Symp., 2002, IGARSS'02. 2002 IEEE Int., 2002, vol. 3, pp. 14831485.
    7. 7)
      • 24. Liu, G., Li, P., Tang, S., et al: ‘Focusing highly squinted data with motion errors based on modified non-linear chirp scaling’, IET Radar Sonar Navig., 2013, 7, (5), pp. 568578.
    8. 8)
      • 3. Raney, R.K., Runge, H., Bamler, R., et al: ‘Precision SAR processing using chirp scaling’, IEEE Trans. Geosci. Remote Sens., 1994, 32, (4), pp. 786799.
    9. 9)
      • 9. Mittermayer, J., Moreira, A., Loffeld, O.: ‘Spotlight SAR data processing using the frequency scaling algorithm’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (5), pp. 21982214.
    10. 10)
      • 36. Neo, Y.L., Wong, F., Cumming, I.G.: ‘A two-dimensional spectrum for bistatic SAR processing using series reversion’, IEEE Geosci. Remote Sens. Lett., 2007, 4, (1), p. 93.
    11. 11)
      • 22. Zhao, B., Qi, X., Yu Kai, D., et al: ‘Accurate fourth-order Doppler parameter estimation approach for geosynchronous SAR’. Proc. 9th EUSAR VDE, 2012, pp. 615618.
    12. 12)
      • 23. Liu, Z., Hu, C., Zeng, T.: ‘Improved secondary range compression focusing method in GEO SAR’. Proc. ICASSP, May 2011, pp. 13731376.
    13. 13)
      • 30. Qiu, X., Hu, D., Ding, C.: ‘An omega-k algorithm with phase error compensation for bistatic SAR of a translational invariant case’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (8), pp. 22242232.
    14. 14)
      • 16. Ulander, L.M.H., Hellsten, H., Stenstrom, G.: ‘Synthetic-aperture radar processing using fast factorized back-projection’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (3), pp. 760776.
    15. 15)
      • 35. Zhang, Q., Wu, J., Li, Z., et al: ‘Generalized omega-k algorithm for missile-borne SAR imaging with constant acceleration’. Proc. IGARSS, 2014, pp. 346349.
    16. 16)
      • 28. Sun, G.C., Xing, M., Wang, Y., et al: ‘A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (8), pp. 48684880.
    17. 17)
      • 31. Wang, R., Loffeld, O., Nies, H., et al: ‘Focusing spaceborne/airborne hybrid bistatic SAR data using wavenumber-domain algorithm’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (7), pp. 22752283.
    18. 18)
      • 2. Moreira, A., Mittermayer, J., Scheiber, R.: ‘Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scanSAR imaging modes’, IEEE Trans. Geosci. Remote Sens., 1996, 34, (5), pp. 11231136.
    19. 19)
      • 34. Ma, C., Gu, H., Su, W., et al: ‘Focusing one-stationary bistatic forward-looking synthetic aperture radar with squint minimisation method’, IET Radar Sonar Navig., 2015, 9, (8), pp. 927932.
    20. 20)
      • 17. Rodriguez Cassola, M., Prats, P., Krieger, G., et al: ‘Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (4), pp. 29492966.
    21. 21)
      • 20. Huang, L., Qiu, X., Hu, D., et al: ‘Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (1), pp. 500508.
    22. 22)
      • 26. Hu, B., Jiang, Y., Zhang, S., et al: ‘Focusing of geosynchronous SAR with nonlinear chirp scaling algorithm’, Electron. Lett., 2015, 51, (15), pp. 11951197.
    23. 23)
      • 27. Bao, M., Xing, M.D., Li, Y.C.: ‘Chirp scaling algorithm for GEO SAR based on fourth-order range equation’, Electron. Lett., 2012, 48, (1), pp. 4142.
    24. 24)
      • 5. Cumming, I.G., Wong, F.H.C.: ‘Digital processing of synthetic aperture radar data: algorithms and implementation’ (Artech House, Boston, MA, 2005).
    25. 25)
      • 11. Madsen, S.N., Edelstein, W., Didomenico, L.D., et al: ‘A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture’. Proc. IGARSS, 2001, vol. 1, pp. 447449.
    26. 26)
      • 8. Moreira, A., Huang, Y.: ‘Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation’, IEEE Trans. Geosci. Remote Sens., 1994, 32, (5), pp. 10291040.
    27. 27)
      • 4. Lanari, R.: ‘A new method for the compensation of the SAR range cell migration based on the chirp z-transform’, IEEE Trans. Geosci. Remote Sens., 1995, 33, (5), pp. 12961299.
    28. 28)
      • 7. Wong, F.H., Yeo, T.S.: ‘New applications of nonlinear chirp scaling in SAR data processing’, IEEE Trans. Geosci. Remote Sens., 2001, 39, (5), pp. 946953.
    29. 29)
      • 33. Shin, H.S., Lim, J.T.: ‘Range migration algorithm for airborne squint mode spotlight SAR imaging’, IET Radar Sonar Navig., 2007, 1, (1), pp. 7782.
    30. 30)
      • 32. Wu, J., Li, Z., Huang, Y., et al: ‘An omega-k algorithm for translational invariant bistatic SAR based on generalized loffeld's bistatic formula’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (10), pp. 66996714.
    31. 31)
      • 10. Cafforio, C., Prati, C., Rocca, F.: ‘SAR data focusing using seismic migration techniques’, IEEE Trans. Aerosp. Electron. Syst., 1991, 27, (2), pp. 194207.
    32. 32)
      • 37. Zhang, Q., Wu, J., Li, Z., et al: ‘On the spatial resolution metrics of bistatic SAR’. Proc. CIE Radar, October 2016, pp. 15.
    33. 33)
      • 38. Mao, X., Zhu, D., Zhu, Z.: ‘Polar format algorithm wavefront curvature compensation under arbitrary radar flight path’, IEEE Geosci. Remote Sens. Lett., 2012, 9, (3), pp. 526530.
    34. 34)
      • 39. Rigling, B.D., Moses, R.L.: ‘Polar format algorithm for bistatic SAR’, IEEE Trans. Aerosp. Electron. Syst., 2004, 40, (4), pp. 11471159.
    35. 35)
      • 25. Hu, C., Liu, Z., Long, T.: ‘An improved CS algorithm based on the curved trajectory in geosynchronous SAR’, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2012, 5, (3), pp. 795808.
    36. 36)
      • 29. Liu, B., Wang, T., Wu, Q., et al: ‘Bistatic SAR data focusing using an omega-k algorithm based on method of series reversion’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (8), pp. 28992912.
    37. 37)
      • 15. Desai, M.D., Jenkins, W.K.: ‘Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar.’, IEEE Trans. Image Process., 1992, 1, (4), pp. 505517.
    38. 38)
      • 1. Curlander, J.C., Mcdonough, R.N.: ‘Synthetic aperture radar: systems and signal processing’ (Wiley, New York, NY, 1991).
    39. 39)
      • 13. Tomiyasu, K.: ‘Synthetic aperture radar in geosynchronous orbit’. Proc. Int. IEEE Antennas and Propagation Symp., 1978, pp. 4245.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0560
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0560
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address