http://iet.metastore.ingenta.com
1887

Complex signum non-linearity for robust GNSS interference mitigation

Complex signum non-linearity for robust GNSS interference mitigation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The performance of a global navigation satellite system (GNSS) receiver can be significantly degraded in the presence of pulsed interference and jamming. In this study, the authors leverage on tools from robust statistics to enhance the receiver performance, with jamming signals treated as outliers to the nominal, interference-free model. Particularly, the signal samples are pre-processed with a zero-memory non-linearity (ZMNL), which limits the impact of pulsed inference in a principled way. A possible approach for the design of such ZMNL is provided by the M-estimator framework when the noise at the receiver input is modelled with a heavy-tailed distribution. This approach is adopted in this study and the complex signum non-linearity is analysed. This ZMNL is obtained by considering a complex Laplacian noise. This choice is discussed and analysed in the context of GNSS receivers under jamming. The impact of the complex signum non-linearity is theoretically analysed under nominal conditions, that is, in the absence of interference. Theoretical results are supported by Monte Carlo simulations. Real GNSS signals, collected in the presence of jamming, are used to demonstrate the advantages brought by the complex signum non-linearity. Theoretical and experimental results demonstrate the benefits of the proposed approach.

References

    1. 1)
      • 1. Dardari, D., Closas, P., Djurić, P.M.: ‘Indoor tracking: theory, methods, and technologies’, IEEE Trans. Veh. Technol., 2015, 64, (4), pp. 12631278.
    2. 2)
      • 2. Agency, E.G.: ‘GNSS market report’. Technical report, GSA, Prague, Czech Republic, 2017.
    3. 3)
      • 3. Mitch, R.H., Dougherty, R.C., Psiaki, M.L., et al: ‘Signal characteristics of civil GPS jammers’. Proc. 24th Int. Technical Meeting of The Satellite Division of the Institute of Navigation (ION/GNSS), Portland, OR, September 2011, pp. 19071919.
    4. 4)
      • 4. Amin, M.G., Closas, P., Broumandan, A., et al: ‘Vulnerabilities, threats, and authentication in satellite-based navigation systems [scanning the issue]’, Proc. IEEE, 2016, 104, (6), pp. 11691173.
    5. 5)
      • 5. Madhani, P.H., Axelrad, P., Krumvieda, K., et al: ‘Application of successive interference cancellation to the GPS pseudolite near-far problem’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (2), pp. 481488, ISSN 0018-9251. doi: 10.1109/TAES.2003.1207260.
    6. 6)
      • 6. Borio, D.: ‘Swept GNSS jamming mitigation through pulse blanking’. Proc. European Navigation Conf. (ENC), Helsinki, Finland, May 2016, pp. 18, doi: 10.1109/EURONAV.2016.7530549.
    7. 7)
      • 7. Borio, D.: ‘A multi-state notch filter for GNSS jamming mitigation’. Proc. Int. Conf. Localization and GNSS (ICL-GNSS 2014), Helsinki, Finland, June 2014, pp. 16, ISSN 2325-0747, doi:10.1109/ICL-GNSS.2014.6934175.
    8. 8)
      • 8. Fernández-Prades, C., Arribas, J., Closas, P.: ‘Robust GNSS receivers by array signal processing: theory and implementation’, Proc. IEEE, 2016, 104, (6), pp. 12071220.
    9. 9)
      • 9. Borio, D.: ‘Robust signal processing for GNSS’. Proc. European Navigation Conf. (ENC), Lausanne, Switzerland, May 2017, pp. 150158, doi: 10.1109/EURONAV.2017.7954204.
    10. 10)
      • 10. Borio, D., Closas, P.: ‘A fresh look at GNSS anti-jammingInside GNSS, September/October 2017, 12, (6), pp. 5461.
    11. 11)
      • 11. Kaplan, E.D., Hegarty, C. (Eds.): ‘Understanding GPS: principles and applications’ (Artech House Publishers, Norwood, MA, USA, 2005, 2nd edn.), pp. 153241.
    12. 12)
      • 12. Borio, D.: ‘Myriad non-linearity for GNSS robust signal processing’, IET Radar Sonar Navig., 2017, 11, (10), pp. 110, e-first, doi: 10.1049/iet-rsn.2016.0610.
    13. 13)
      • 13. Kay, S.M.: ‘Fundamentals of statistical signal processing: estimation theory’, vol. 1 (Pearson Education, Upper Saddle River, NJ, 1993).
    14. 14)
      • 14. Borio, D., Cano, E.: ‘Optimal global navigation satellite system pulse blanking in the presence of signal quantisation’, IET Signal Process., 2013, 7, (5), pp. 400410. ISSN 1751-9675. doi:10.1049/iet-spr.2012.0199.
    15. 15)
      • 15. Huber, P.J.: ‘Robust estimation of a location parameter’, Ann. Math. Stat., 1964, 35, (1), pp. 73101, doi:10.1214/aoms/1177703732.
    16. 16)
      • 16. Huber, P.J., Ronchetti, E.M.: ‘Robust statistics. Wiley probability and statistics’ (John Wiley and Sons, Hoboken, NJ, 2009, 2nd edn.).
    17. 17)
      • 17. Wang, X., Poor, H.V.: ‘Robust multiuser detection in non-Gaussian channels’, IEEE Trans. Signal Process., 1999, 47, (2), pp. 289305, ISSN 1053-587X. doi:10.1109/78.740103.
    18. 18)
      • 18. Miller, J., Thomas, J.: ‘Detectors for discrete-time signals in non-Gaussian noise’, IEEE Trans. Inf. Theory, 1972, 18, (2), pp. 241250, ISSN 0018-9448. doi:10.1109/TIT.1972.1054787.
    19. 19)
      • 19. Kassam, S.A.: ‘Signal detection in non-Gaussian noise’ (Springer-Verlag, Berlin, Germany, 1988).
    20. 20)
      • 20. Eltoft, T., Kim, T., Lee, T.W.: ‘On the multivariate Laplace distribution’, IEEE Signal Process. Lett., 2006, 13, (5), pp. 300303, ISSN 1070-9908. doi: 10.1109/LSP.2006.870353.
    21. 21)
      • 21. Arce, G.R.: ‘Nonlinear signal processing: A statistical approach’ (Wiley-Interscience, Hoboken, NJ, 2004).
    22. 22)
      • 22. Hoyos, S., Li, Y., Bacca, J., et al: ‘Weighted median filters admitting complex-valued weights and their optimization’, IEEE Trans. Signal Process., 2004, 52, (10), pp. 27762787, ISSN 1053-587X. doi: 10.1109/TSP.2004.834342.
    23. 23)
      • 23. Arce, G.R., Li, Y.: ‘Median power and median correlation theory’, IEEE Trans. Signal Process., 2002, 50, (11), pp. 27682776, ISSN 1053-587X. doi: 10.1109/TSP.2002.804092.
    24. 24)
      • 24. Abramowitz, M., Stegun, I.A. (Eds.): ‘Handbook of mathematical functions’ (Dover Publications, New York, 1972).
    25. 25)
      • 25. Bechman, G., Narici, L.: ‘Functional analysis. Dover books on mathematics’ (Dover Publications, Mineola, New York, USA, 1998, 2nd edn.).
    26. 26)
      • 26. Borio, D., Dovis, F., Kuusniemi, H., et al: ‘Impact and detection of GNSS jammers on consumer grade satellite navigation receivers’, Proc. IEEE, 2016, 104, (6), pp. 12331245, ISSN 0018-9219. doi:10.1109/JPROC.2016.2543266.
    27. 27)
      • 27. Betz, J.W.: ‘Effect of partial-band interference on receiver estimation of C/N0: theory’. Proc. National Technical Meeting of The Institute of Navigation, Long Beach, CA, January 2001, pp. 817828.
    28. 28)
      • 28. Betz, J.W.: ‘Effect of narrowband interference on GPS code tracking accuracy’. Proc. National Technical Meeting of The Institute of Navigation, Anaheim, CA, January 2000, pp. 1627.
    29. 29)
      • 29. Van Dierendonck, A.: ‘Ch. 5, GPS receivers’. inParkinson, B.W., Spilker, J.J.Jr. (Eds.): ‘Global positioning system theory and applications’, vol. 1 (American Institute of Aeronautics & Astronautics, Reston, VA, 1996), pp. 329407.
    30. 30)
      • 30. Rügamer, A., Joshi, S., van der Merwe, J.R., et al: ‘Chirp mitigation for wideband GNSS signals with filter bank pulse blanking’. Proc. 30th Int. Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+), Portland, Oregon, September 2017, pp. 39243940.
    31. 31)
      • 31. Cuntz, M., Konovaltsev, A., Sgammini, M., et al: ‘Field test: jamming the DLR adaptive antenna receiver’. Proc. 24th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS), Portland, OR, September 2011, pp. 384392.
    32. 32)
      • 32. De Lorenzo, D.S., Antreich, F., Denks, H., et al: ‘Testing of adaptive beamsteering for interference rejection in GNSS receivers’. Proc. European Navigation Conf. (ENC), Geneva, Switzerland, May 2007, pp. 12771287.
    33. 33)
      • 33. Kraus, T., Bauernfeind, R., Eissfeller, B.: ‘Survey of in-car jammers – analysis and modeling of the RF signals and IF samples (suitable for active signal cancelation)’. Proc. 24th Int. Technical Meeting of the Satellite Division of the Institute of Navigation ION/GNSS, Portland, OR, September 2011, pp. 430435.
    34. 34)
      • 34. Robertson, M.: ‘A brief history of InvSqrt. Bachelor of science in computer science’. University of New Brunswick, Department of Computer Science and Applied Statistics, April 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0552
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0552
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address