http://iet.metastore.ingenta.com
1887

Non-linear FIR smoothing filter for systems with a modelling error and its application to the DR/GPS integrated navigation

Non-linear FIR smoothing filter for systems with a modelling error and its application to the DR/GPS integrated navigation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Infinite impulse response (IIR) filter generally used in estimation, positioning, etc. has problems in that, when there is a modeling error even if the system is completely observable, the estimates may converge to incorrect values or the varying values cannot be estimated quickly. The finite impulse response (FIR) filter, which has been investigated as a method to solve this problem, has faster estimation performance than the IIR filter in the presence of modelling error, but there is a limit to the convergence characteristic of the state variables. In this paper, a non-linear FIR smoothing (NFS) filter is proposed to overcome the limitation of the state variable convergence characteristic of the FIR filter. The proposed NFS filter adds the smoothing concept to the modified receding horizon Kalman FIR filter. In order to verify the performance of the NFS filter, this filter is applied to a delay-tolerant integrated navigation system using magnetic compass (MC) of which error is difficult to be modelled accurately. If an un-modeled jump or ramp error occurs in the MC measurement, it shows that the NFS filter can estimate the measurement error more accurately than the FIR filter as well as the IIR filter through a simulation.

References

    1. 1)
      • 1. Cho, S.Y., Lee, H. K.: ‘Modified RHKF filter for improved DR/GPS navigation against uncertain model dynamics’, ETRI J., 2012, 34, (3), pp. 379387.
    2. 2)
      • 2. Kwon, W.H., Kim, P.S., Han, S.H.: ‘A receding horizon unbiased FIR filter for discrete-time state space models’, Automatica, 2002, 38, (3), pp. 545551.
    3. 3)
      • 3. Pomarico-Franquiz, J.J., Shmaliy, Y.S.: ‘Accurate self-localization in RFID tag information grids using FIR filtering’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 13171326.
    4. 4)
      • 4. Kim, P.S.: ‘An alternative FIR filter for state estimation in discrete-time systems’, Digit. Signal Process., 2010, 20, (3), pp. 935943.
    5. 5)
      • 5. Pak, J.M, Ahn, C.K., Lim, M.T., et al: ‘Horizon group shift FIR filter: alternative nonlinear filter using finite recent measurement’, Measurement, 2014, 57, pp. 3345.
    6. 6)
      • 6. Cho, S.Y., Kim, B.D.: ‘Adaptive IIR/FIR fusion filter and its application to the INS/GPS integrated systems’, Automatica, 2008, 44, (8), pp. 20402047.
    7. 7)
      • 7. Ling, K.V., Lim, K.W.: ‘Receding horizon recursive state estimation’, IEEE Trans. Autom. Control, 1999, 44, (9), pp. 17501753.
    8. 8)
      • 8. Michalska, M., Mayne, D.Q.: ‘Moving horizon observers and observer based control’, IEEE Trans. Autom. Control, 1995, 40, (6), pp. 9951006.
    9. 9)
      • 9. Trecate, G.F., Mignone, D., Morari, M.: ‘Moving horizon estimation for hybrid systems’, IEEE Trans. Automatic Control, 2002, 47, (10), pp. 16631676.
    10. 10)
      • 10. Brown, R.G., Hwang, P.Y.C.: ‘Introduction to random signals and applied kalman Filtering’ (John Wiley & Sons, NJ, 2012).
    11. 11)
      • 11. Crouse, D.F., Willett, P., Bar-Shalom, Y.: ‘A low-complexity sliding-window kalman FIR smoother for discrete-time models’, IEEE Signal Process. Lett., 2010, 17, (2), pp. 177180.
    12. 12)
      • 12. Han, S.H., Kwon, B.K., Kwon, W.H.: ‘Minimax FIR smoothers for deterministic continuous-time state space models’, Automatica, 2009, 45, (6), pp. 15611566.
    13. 13)
      • 13. Kwon, B.K., Han, S.K., Han, S.H.: ‘A finite impulse response fixed-lag smoothing for discrete-time nonlinear systems’, J. Inst. Control, Robotics Syst., 2015, 21, (9), pp. 807810.
    14. 14)
      • 14. Yu, J., Lee, J.G., Park, C.G., et al: ‘An off-line navigation of a geometry PIG using a modified nonlinear fixed-interval smoothing filter’, Control Eng. Pract., 2005, 13, (11), pp. 14031411.
    15. 15)
      • 15. Lee, S.Y., Choi, K.H., Joo, I.H., et al: ‘Design and implementation for 4S-van: a mobile mapping system’, ETRI J., 2006, 28, (3), pp. 265274.
    16. 16)
      • 16. Saab, S.S.: ‘A map matching approach for train positioning. Part I: development and analysis’, IEEE Trans. Veh. Technol., 2002, 49, (2), pp. 467475.
    17. 17)
      • 17. Durrant-Whyte, H., Bailey, T.: ‘Simultaneous localization and mapping: part I’, IEEE Robot. Autom. Mag., 2006, 13, (2), pp. 99110.
    18. 18)
      • 18. Wang, W., Xie, G.: ‘Online high-precision probabilistic localization of robotic fish using visual and inertial cues’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 11131124.
    19. 19)
      • 19. Sebesta, K.D., Boizot, N.: ‘A real-time adaptive high-gain EKF, applied to a quadcopter inertial navigation system’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 495503.
    20. 20)
      • 20. Liu, H., Wang, X., Zhong, Y.: ‘Quaternion-based robust attitude control for uncertain robotic quadroters’, IEEE Trans. Ind. Inf., 2015, 11, (2), pp. 406415.
    21. 21)
      • 21. Zhang, Y., Chong, K.T.: ‘A GPS/DR data fusion method based on the GPS characteristics for mobile robot navigation’, Int. J. Control Autom., 2014, 7, (10), pp. 119132.
    22. 22)
      • 22. Zhang, H., Zhao, Y.: ‘The performance comparison and analysis of extended Kalman filters for GPS/DR navigation’, Optik-Int. J. Light Electron. Optics, 2011, 122, (9), pp. 777781.
    23. 23)
      • 23. Yang, L., Li, Y., Wu, Y., et al: ‘An enhanced MEMS-INS/NSS integrated system with fault detection and exclusion capability for land vehicle navigation in urban areas’, GPS Solutions, 2014, 18, (4), pp. 593603.
    24. 24)
      • 24. Farrell, J.A., Barth, M.: ‘The global positioning system & inertial navigation’ (McGraw-Hill, New York, 1999).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0551
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0551
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address