Subarray-based time-delay low sidelobes methods for space-time coding array

Subarray-based time-delay low sidelobes methods for space-time coding array

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A space-time coding array (STCA) system transmits an identical waveform with a small time offset across the array elements. It shares the characteristics of high angular resolution and instant wide angular coverage, leading to the low probability of interception as seen in the traditional multiple-input and multiple-output radar. Angle-time two-dimensional matched filter is required in the STCA. However, the sidelobe level (SLL) of the multi-dimensional ambiguity function in the range and angle domains is not as low as that desired in practical applications and the range resolution decreases as the number of elements increases. Here, two kinds of subarray-based time-delay methods are proposed to improve the resolution and reduce the SLL of the ambiguity function for STCA. Both the regular and irregular subarrays are considered, which increase the degrees of freedom and thus enhance the range resolution. Moreover, the SLL of the ambiguity function is reduced. Simulation results are provided to demonstrate the effectiveness of the proposed methods.


    1. 1)
      • 1. Le Chevalier, F.: ‘Space-time transmission and coding for airborne radars’, CIE J. Radar Sci. Technol., 2007, 6, (6), pp. 411421.
    2. 2)
      • 2. Le Chevalier, F.: ‘Wide beam wideband motion sensing (tutorial FLC)’. IEEE Int. Radar Conf., 2015.
    3. 3)
      • 3. Liu, Y., Ruan, H., Wang, L., et al: ‘The random frequency diverse array: a new antenna structure for uncoupled direction-range indication in active sensing’, IEEE J. Sel. Top. Signal Process., 2017, 11, (2), pp. 295308.
    4. 4)
      • 4. Hong, T.D., Russer, P.: ‘Signal processing for wideband smart antenna array applications’, IEEE Microw. Mag., 2004, 5, (1), pp. 5767.
    5. 5)
      • 5. Li, J., Stoica, P.: ‘MIMO radar signal processing’ (Wiley-IEEE Press, Hoboken, NJ, 2008).
    6. 6)
      • 6. Yang, H., Liu, W., Xie, W., et al: ‘General signal model of MIMO radar for moving target detection’, IET Radar Sonar Navig., 2017, 11, (4), pp. 570578.
    7. 7)
      • 7. Fuhrmann, D., Antonio, G.: ‘Transmit beamforming for MIMO radar systems using signal cross-correlation’, IEEE Trans. Aerosp. Electron. Syst., 2008, 44, pp. 171186.
    8. 8)
      • 8. Yang, Y., Blum, R.: ‘Minimax robust MIMO radar waveform design’, IEEE J. Sel. Top. Signal Process., 2007, 1, pp. 147155.
    9. 9)
      • 9. Hassanien, A., Vorobyov, S.A.: ‘Phased-MIMO radar: a tradeoff between phased-array and MIMO radars’, IEEE Trans. Signal Process., 2010, 58, (6), pp. 31373151.
    10. 10)
      • 10. Cheng, Z., He, Z., Zhang, S., et al: ‘Constant modulus waveform design for MIMO radar transmit beampattern’, IEEE Trans. Signal Process., 2017, 65, (18), pp. 49124923.
    11. 11)
      • 11. Daum, F., Huang, J.: ‘MIMO radar: snake oil or good idea’, IEEE Aerosp. Electron. Syst. Mag., 2009, 24, (5), pp. 812.
    12. 12)
      • 12. Babur, G., Aubry, P., Le Chevalier, F.: ‘Space-time radar waveforms: circulating codes’, J. Electr. Comput. Eng., 2013, 2013, (1), pp. 18,
    13. 13)
      • 13. Babur, G., Aubry, P., Le Chevalier, F.: ‘Simple transmit diversity technique for phased array radar’, IET Radar Sonar Navig., 2016, 10, (6), pp. 10461056.
    14. 14)
      • 14. Babur, G., Aubry, P., Le Chevalier, F.: ‘Space-time codes for active antenna systems: comparative performance analysis’. Proc. IET Int. Radar Conf., Xi'an, China, April 2013, pp. 16.
    15. 15)
      • 15. Faucon, T., Pinaud, G., Le Chevalier, F.: ‘Mismatched filtering for circulating space-time codes’. Proc. IET Int. Radar Conf., Hangzhou, China, 2015, pp. 17, doi: 10.1049/cp.2015.1185.
    16. 16)
      • 16. Roussel, K., Babur, G., Le Chevalier, F.: ‘Optimization of low sidelobes radar waveforms: circulating codes’. Proc. Int. Radar Conf., Lille, France, 2014, pp. 16.
    17. 17)
      • 17. Xu, Z., Li, H., Liu, Q.-Z., et al: ‘Pattern synthesis of conformal antenna array by the hybrid genetic algorithm’, Prog. Electromagn. Res., 2008, 79, pp. 7590.
    18. 18)
      • 18. Omar, O.K., Debbat, F., Stambouli, A.B.: ‘Null steering beamforming using hybrid algorithm based on honey bees mating optimization and tabu search in adaptive antenna array’, Prog. Electromagn. Res. C, 2012, 32, pp. 6580.
    19. 19)
      • 19. Zaharis, Z.D., Yioultsis, T.V.: ‘A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated Boolean PSO’, Prog. Electromagn. Res., 2011, 117, pp. 165179.
    20. 20)
      • 20. Darzi, S., Kiong, T.S., Islam, M.T., et al: ‘Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm’, Sci. World J., 2014, 2014, pp. 110,
    21. 21)
      • 21. Lellouch, G., Mishra, A.K., Inggs, M.: ‘Design of OFDM radar pulses using genetic algorithm based techniques’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (4), pp. 19531966.
    22. 22)
      • 22. Xiong, J., Wang, W.-Q., Shao, H., et al: ‘Frequency diverse array transmit beampattern optimization with genetic algorithm’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 469472.
    23. 23)
      • 23. Xu, J., Liao, G., Zhu, S., et al: ‘Joint range and angle estimation using MIMO radar with frequency diverse array’, IEEE Trans. Signal Process., 2015, 63, (13), pp. 33963410.
    24. 24)
      • 24. Wang, W.-Q.: ‘Overview of frequency diverse array in radar and navigation applications’, IET Radar Sonar Navig., 2016, 10, (6), pp. 10011012.
    25. 25)
      • 25. Xu, J., Liao, G., Zhang, Y., et al: ‘An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization’, IEEE J. Sel. Top. Signal Process., 2017, 11, (2), pp. 309320.
    26. 26)
      • 26. Xu, J., Liao, G., Huang, L., et al: ‘Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar’, IEEE Trans. Signal Process., 2017, 65, (4), pp. 973984.
    27. 27)
      • 27. Khan, W., Qureshi, I.M., Basit, A., et al: ‘Range-bins-based MIMO frequency diverse array radar with logarithmic frequency offset’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 885888.
    28. 28)
      • 28. Rabideau, D.J., Parker, P.: ‘Ubiquitous MIMO multifunction digital array radar’. Proc. of the 37th IEEE Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, USA, 2003, vol. 1, pp. 10571064.
    29. 29)
      • 29. Le Chevalier, F.: ‘Wider bandwidths for improved angle and velocity resolution’. Proc. of the 21st European Signal Processing Conf., EUSIPCO 2013, Marrakech, September 2013.
    30. 30)
      • 30. Basit, A., Qureshi, I.M., Khan, W., et al: ‘Cognitive frequency diverse array radar with symmetric non-uniform frequency offset’, Sci. China Inf. Sci., 2016, 59, p. 102314, doi: 10.1007/s11432-015-0503-x.
    31. 31)
      • 31. Wang, Y., Wang, W.-Q., Chen, H., et al: ‘Optimal frequency diverse subarray design with Cramér-Rao lower bound minimization’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 11881191.

Related content

This is a required field
Please enter a valid email address